
Keil Software, Inc. Application Note

Memory Space Utilization in C51 APNT_101

Page 1 of 3 Revision date: 23-Feb-97

OVERVIEW
The 8051 processor uses a Harvard memory architecture. This means that each memory area is
separate and distinct from the other areas. Code space is physically different from RAM space.

DATA AND IDATA MEMORY
There are two internal ram areas. One is accessed directly, and the other indirectly through R0 or
R1. It is important to remember that the lower 128 bytes of these areas overlap. A picture looks
like this:

00H

80H

0FFH

Direct
data
Area

Indirect
data
Area

SFR
Area

Remember that if you use a 256 byte derivative it is possible to get an “Out of Data Space” error
from the linker even when you have used only 80H bytes of data. You still have access to the rest
of memory (80H - 0FFH), but you must specify idata for variables that can be located in this
range.

CODE MEMORY
C51 uses the ROM directive (page 49 in C51 manual) to help optimize call and jump instructions.
If you use one of Philips reduced instruction set processors such as the 80C751 or 80C752, you
must use the ROM (SMALL) directive so that C51 generates only ACALL and AJMP
instructions. With other processors we recommend that you use ROM(LARGE) which is the
default. This generates LCALL and LJMP instructions for the full 64KB range.

You may optimize the code after your project is fully debugged and if you determine that further
optimization is required. You may then use ROM (COMPACT) which generates AJMP
instructions within a function and LCALL instructions for function calls. This saves 1 byte per
jump. There is not a great savings to be gained from this step, but if your code is just a few bytes
over what your hardware allows it may help. Remember that when using ROM (COMPACT) no
function may be longer than 2KB.

Keil Software, Inc. Application Note

Memory Space Utilization in C51 APNT_101

Page 2 of 3 Revision date: 23-Feb-97

MEMORY MODELS
When designing your 8051 project there are a few considerations that should be taken into account
to optimize the use of the internal RAM area. Since the directly accessed internal data area is an
extremely limited commodity it must be used wisely. However, there are few, if any good reasons
to use any memory model other than SMALL. SMALL memory model is the default. It generates
the tightest code with the fastest execution speed. To use this limited resource most effectively,
there are a few guidelines you should follow.

VARIABLES
Global variables should be located in RAM areas other than the data area through the use of one
of the memory type specifiers idata, pdata, or xdata as your application permits. The goal here is
to give the linker the freedom to use the data area for the DATA_GROUP local variable segment.
Its size and location can be found by looking in the M51 file generated by BL51.

If you are using data types that are larger than integers they should also be located in a memory
area other than data. This includes longs, floats, arrays, structures, or unions larger than an
integer.

INTERRUPT SERVICE ROUTINES
Interrupt routines require special consideration as well. All local variables declared within an
interrupt are static in nature and are given unique data locations. For this reason, an ISR’s local
variables should also be located as if they were variables larger than an integer. Doing so slows
down the ISR and is discussed under exceptions.

EXCEPTIONS
The exceptions to these guidelines are determined by the variable’s access. If speed of access is
critical, as in a fast responding interrupt or a small ring buffer used for high speed serial
communications, then the default creates the fastest access. Even then, idata is usually adequate.
If, after your project is debugged, you find that internal data space is available, there is a
significant gain to be realized by moving floats and longs into the data area. Try these first, then
the other variables. Begin optimizing variable locations only after your project is debugged and you
are looking for specific optimizations.

CONCLUSION
It is important to watch how your directly accessed data space is used. Use it wisely and your
applications can be nice and clean with tight, fast code. Use it unwisely and you will be forced to
use the LARGE memory model which will make your code much less efficient. A few steps taken
at the beginning of your design can make all the difference in the world.

Keil Software, Inc. Application Note

Memory Space Utilization in C51 APNT_101

Page 3 of 3 Revision date: 23-Feb-97

Copyright © 1997 Keil Software, Inc. All rights reserved.

In the USA: In Europe:
Keil Software, Inc. Keil Elektronik GmbH
16990 Dallas Parkway, Suite 120 Bretonischer Ring 15
Dallas, TX 75248-1903 D-85630 Grasbrunn b. Munchen
USA Germany

Sales: 800-348-8051 Phone: (49) (089) 45 60 40 - 0
Phone: 972-735-8052 FAX: (49) (089) 46 81 62
FAX: 972-735-8055

E-mail: sales.us@keil.com Internet: http://www.keil.com/ E-mail: sales.intl@keil.com
support.us@keil.com support.intl@keil.com

