
Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 1

Copyright 1999-2004 Ken Arnold 1

Embedded Controller
Programming 1

Instructor - Ken Arnold
ecp1@hte.com

Week 2:

Introduction to Assembly
Language and Number Systems

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 2

Copyright 1999-2004 Ken Arnold 2

Overview

Number Lines
Numeric Symbology
Unsigned and Signed
8051 Instruction Set
Character Symbology

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 3

Copyright 1999-2004 Ken Arnold 3

Number Systems

Number and Computers
Signed vs. Unsigned Numbers
Addition and Subtraction
Logical Operations
Numeric Encoding of Data
Character Representations

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 4

Copyright 1999-2004 Ken Arnold 4

Numbers and Computers

Review
Radix – another name for “base”
Digital approximation of “real” values
Finite range and resolution

•Although humans tend to communicate symbolically, it is important to realize, and
I mean truly understand, that computers are numeric processing engines.
Everything on a computer boils down to a number. This is true for the data used by
your application and it is true for the instructions which comprise your application.
You are already familiar with many different number systems: Metric and English
measures, Centigrade and Fahrenheit, if fly or boat you understand knots, furlongs,
fortnights, Newtons, Calories…I think you get the idea. Computers simply present
us with an opportunity to create new ways of representing numbers.
•Since childhood you have been learning to count in a number of different radices:
radix of 10 (decimal) when you count, radix of 12 when you measure things in
inches and feet, radix of 60 when you measure in seconds and minutes. Computers
use a radix of 2 (binary) for everything. In the “old” days, we represented numbers
in octal,which is a radix of 8. This was convenient because it is very easy to map
binary to and from octal values. Nowadays, almost everything is done in
hexadecimal (radix of 16). Hexadecimal results in a more compact number
representation, and also maps very easily to and from binary.

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 5

Copyright 1999-2004 Ken Arnold 5

Radix: Decimal

Decimal (base-10) 10 symbols: 0..9
1,23410 = 1x103 + 2x102 + 3x101 + 4x100

103=10003

102=1002

101=101

100=10

Power of 10Position

Counting in decimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10...

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 6

Copyright 1999-2004 Ken Arnold 6

Radix: Binary

Binary (base-2) 2 symbols: 0 and 1
10112 = 1x23 + 0x22 + 1x21 + 1x20

23=83

22=42

21=21

20=10

Power of 2Position

Counting in binary: 0, 1, 10, 11, 100, 101, 110, 111

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 7

Copyright 1999-2004 Ken Arnold 7

Radix: Hexadecimal

Hexadecimal(base-16) 16 symbols: 0-9,a-f
123416 = 1x163 + 2x162 + 3x161 + 4x160

163=40963

162=2562

161=161

160=10

Power of 16Position

Counting in hex:0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 8

Copyright 1999-2004 Ken Arnold 8

Numeric Representation

Assembly language:
Numbers must start with 0..9, ALWAYS!
Hex: 00h, 01h, 20h, 0a1h (note leading 0)
Decimal (default): 10d, 0d, 12
Binary: 0010b, 1011b, 10b

C language:
Hex: 0x12, 0x00, 0xab, 0xAB
Decimal: 10, 1234, 0

•It’s important to understand how to enter numeric values into your program.
Examples for moving 2210 into the accumulator:

•MOV A,#16h
•MOV A,#22d

•In a high level language, such as C, we would write the following:
•ACC = 0x16;
•ACC = 22;

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 9

Copyright 1999-2004 Ken Arnold 9

Range

Extremes that can be represented
Ex: -80h to +07Fh, -5.12V to +5.11V

What is the “word” size: 8, 16, 32?
What is the “format”: signed, unsigned?
This means an 8-bit word can only
represent 256 values: 0..255 or –128..127
are two examples.

•The range of numbers which can be represented on a computer is limited by a
number of factors, including the size of the storage area for the value and the format
of the value. Say we only have 8 bits of storage for the value. If we decided that
the value is unsigned, then we have a range from 0 to 0FFh. If the value must be
signed (that is, it may have negative as well as positive values), then our range is
from –80h to 07Fh because we must use one of the data bits to represent the sign of
the value.

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 10

Copyright 1999-2004 Ken Arnold 10

Signed Numbers

Two’s Complement
Most significant bit represents the most
negative value.
If word size is 8 bits, then bit 7 represents
–27 = –80h = –128d.
The other bits are still positive values.

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 11

Copyright 1999-2004 Ken Arnold 11

Signed Numbers: Examples

Assume an 8-bit word.
80h = -128d ← MOST negative number
7Fh = 127d ← MOST positive number
00h = 00d
81h = 80h+01h = -128d+1 = -127d
0FFh = 80h+7Fh = -128d+127d = -1
0FEh = 80h+7Eh = -128d+126d = -2
01h = 1, 02h = 2, etc.

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 12

Copyright 1999-2004 Ken Arnold 12

Signed Numbers: Examples

Assume a 4-bit word.
10002 = -8 ← MOST negative number
01112 = 7 ← MOST positive number
0 = 0, 1 = 1, etc.
9 = 10012 = -8+1 = -7
0Fh = 11112 = -8+7 = -1

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 13

Copyright 1999-2004 Ken Arnold 13

Unsigned Numbers

Positive values
0..(2n-1), where n is the width of your
word
Example: if word is 8 bits wide, then data
ranges from 0..0FFh (255d).

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 14

Copyright 1999-2004 Ken Arnold 14

Number Lines

Unsigned Integer Number Line:

Signed Integer Number Line:

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 15

Copyright 1999-2004 Ken Arnold 15

Example: 4 Bit 2’s Comp.

Ex: 10112 = -510

MSB is Negative
Range: -8 to +7
Resolution: 1

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 16

Copyright 1999-2004 Ken Arnold 16

Number Circle

Limited Range:
For n bits:
-2n-1 .. 2n-1-1

Overflow:
7+1 = - 8
-8 -1 = +7

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 17

Copyright 1999-2004 Ken Arnold 17

Overflow vs. Carry

What does carry indicate?
What does overflow mean?
Programmer Assistance required:

Result exceeds 2’s complement range11

Carry must be accounted for01

Result exceeds 2’s complement range10

None00

ActionOVCY

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 18

Copyright 1999-2004 Ken Arnold 18

Carry

Carry Bit Set (1) Indicates that the
result of ADDing or SUBtracting two
UNsigned values exceeds the range of
the number system:

For 8 bit unsigned numbers, range 0..255:
255 + 3 = 2 plus Carry = 1
5 - 6 = 255 plus Carry(a.k.a. Borrow) = 1

•In terms of subtraction, the carry flag is set when a borrow is required. Again, the
carry flag is used to “extend” the register size from 8 bits to a pretend 9 bits.

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 19

Copyright 1999-2004 Ken Arnold 19

Overflow

Overflow (OV) Bit Set (1) Indicates that
the result of ADDing or SUBtracting two
signed 2’s complement values exceeds
the range of the number system:

For 8 bit 2’s comp vals, range -128..+127:
127 + 3 = -126 and OVerflow = 1
-123 - 6 = +127 and OVerflow = 1

•Overflow occurs when the result of adding or subtracting two signed, two’s
complement numbers results in a number that cannot be represented with 8 bits.
The sign of the result is wrong.
•An overflow condition is indicated when the Overflow flag (OV) is set. This flag
is found in the PSW of the 8051, bit 2. This flag only has meaning during signed
arithmetic operations. The overflow flag is set anytime you inadvertently and
incorrectly change the sign of a result. The text expresses this as OV = C7 XOR C6.
This means an overflow occurs if you have either a carry from bit 7 or a carry from
bit 6, but not both.

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 20

Copyright 1999-2004 Ken Arnold 20

Unsigned Value Examples

Addition:
0xFF+0x01=255+1=0, C=1
0x80+0x80=128+128=0, C=1
0x80+0x20=128+32=0xA0=160, C=0

Subtraction:
0x20-0x40=32-64=0xE0=224, C=1
0x40-0x20=64-32=0x20=32, C=0

Carry is sort of like overflow for unsigned numbers. The result of an add or subtract
won’t fit in an 8 bit unsigned result.

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 21

Copyright 1999-2004 Ken Arnold 21

Signed Value Examples

0xFF+0x01 = -1+1 = 0, CY=1, OV=0

0x80-0x01 = -128-1 = 127, CY=0, OV=1

0x70+0x05 = 112+5 = 117, CY=0, OV=0

0xC4+0xBA = -60-70 = 126, CY=1, OV=1

•In the first example, when we look at the binary we have (1111 1111)2+(0000
0001)2=(1 0000 0000)2. You can see that the 9th bit is set, which is CY. However,
because we had an overflow from both bit 6 and bit 7, there is no overflow.
•Again, let’s fall back on binary for the next example: (1000 0000)2-(0000
0001)2=(0111 1111)2. Here, there was not a borrow for bit 7 (no carry), but there is
a borrow for bit 6…an overflow! Note how the sign is wrong and so programmer
assistance is required to fix the sign bit.
•Normal addition, just like the unsigned version for this example.
•Finally, an example with both the CY and OV bits set: (1100 0100)2+(1011
1100)2=(1 0111 1110)2. There is a carry from bit 7, but no carry from bit 6, so we
have a carry and overflow. Now you might say “-60-70 isn’t 126 it’s –130! Even if
I change the sign, I just get –126. What’s going on?” Well, you can’t forget the
fact that you have a range of –128..127. -130 is outside the range you can represent.
•Side note: In the above example, if you use the carry bit to be –256, then 126-
256=-130.

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 22

Copyright 1999-2004 Ken Arnold 22

Instruction Set

Arithmetic
Move
Control: Jump, Call, Return

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 23

Copyright 1999-2004 Ken Arnold 23

8051 Math

Basic Instructions:
INC, DEC
ADD, ADDC, SUBB

Multi-byte Math
Use carry and overflow
Software has to do it.
(1Fh 0FFh)+(02h 01h) = (22h 00h)
Is this a signed or unsigned example?

•The simplest operations are the increment and decrement operation, adding and
subtracting by one. It is important to note that these operations do not affect the
math flags (CY or OV). One more “feature” to keep in mind is that, while you can
INC DPTR, there is not a matching DEC DPTR.
•The difference between the ADD and ADDC is that the ADD ignores the carry bit
on input and the ADDC uses the carry bit as input. Keep in mind that the SUBB
instruction always uses the carry bit as a borrow.
•For our multi-byte example, we first add 0FFh and 01, which results in 00 with
CY=1. Then we use ADDC to add 1Fh and 02. 1Fh+2 = 21h then add in the carry
flag for the final answer of 22h.
•Due to careful selection of the problem, it could be signed or unsigned. We really
can’t tell. Why? Because the sign bit is the most significant bit of the multi-byte
value. So, if our example is signed then it must be a positive value because the most
significant bit of the most significant bytes (1Fh and 02) are zero.

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 24

Copyright 1999-2004 Ken Arnold 24

Data Path: Arithmetic 1

INC/DEC
Increment or decrement
valid operands: A Rn @Ri direct

INC dptr
Increments 16 bit dptr register
But there’s no DEC dptr instruction!!

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 25

Copyright 1999-2004 Ken Arnold 25

Data Path: Arithmetic 2

ADD A,x
Add x to A (the Accumulator)
set carry bit if carry result, no carry bit in
x operand: @Ri, #data, direct, Rn

ADDC A,x
Add x to A plus carry bit
set carry bit if carry result
x operand: @Ri, #data, direct, Rn

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 26

Copyright 1999-2004 Ken Arnold 26

MOV Instructions

MOV destination, source
MOV A,Rn MOV Rn,A

Register <-> Accumulator

MOV A,direct MOV direct, A
Direct byte <-> Accumulator

MOV A,@Ri MOV @Ri,A
Indirect RAM @R0/@R1 <-> Accumulator

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 27

Copyright 1999-2004 Ken Arnold 27

MOV Instructions 2

MOV A,#data
Move 8 bit immediate data to Accumulator

MOV direct,#data
Move 8 bit immediate data to direct address

MOV Rn,direct MOV direct,Rn
Move direct byte <-> register n

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 28

Copyright 1999-2004 Ken Arnold 28

MOV Instructions 3

MOVC move data from code space
Code Memory is Usually Non-volatile
Used for Table Lookup
MOVC a,@a+dptr

source address is @(a+dptr)

MOVC a,@a+pc
source address is @(a+pc)

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 29

Copyright 1999-2004 Ken Arnold 29

Example Move Instructions

MOV, MOVC, MOVX - Examples

MOV A, 25h MOV A, 90h
MOV A, #49h MOV A, R0
MOV A, @R0 MOV R7, A
MOV 48h, #3Ch MOV @R1, #45h
MOV DPTR, #1234 MOV C, 90h
MOVC A, @A+DPTR MOVC A, @A+PC
MOVX A, @R1 MOVX A, @DPTR
MOVX @DPTR, A MOVX @R0, A

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 30

Copyright 1999-2004 Ken Arnold 30

Control Transfer

JMP addr
Go to address

JMP @a+dptr
Indirect Jump
Address @(a+dptr)

JZ rel
if Accumulator is Zero

JNZ rel
if Acc. is Non-Zero

CALL addr
Save PC on stack
Go to subroutine
address

RET return
Pop PC from stack

RETI
Return from ISR
Allows Interrupts

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 31

Copyright 1999-2004 Ken Arnold 31

Logical and Bit Operations

AND – Used to mask/clear specific bits
OR – Used to set specific bits
XOR – Used to toggle specific bits
8051 Instructions

ANL, ORL, XRL, CLR, CPL

C Language
& - AND, | - OR, ^ - XOR
Don’t confuse with logical operations: && and ||

•The use of logical operations is one of the basic foundations of any program. The
8051 supports the use of the standard suite of operations: AND, OR, XOR.
•With the 8051, the logical operations can operate on a byte or on a single bit.
•The C language also supports these logical operations. It is important to note the
difference between the logical operators and the Boolean operators.

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 32

Copyright 1999-2004 Ken Arnold 32

Codes and Mapping

0110001 2 = what? It depends...
An n bit Binary Number Represents 2n:

Numbers or Symbols or Colors or …
7 bits could be 128 ASCII Codes, or the
Numbers 0..127, or 0 to 127/128ths, or...

Mapping of Numbers is Really Arbitrary!
Some Are Just More Convenient...

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 33

Copyright 1999-2004 Ken Arnold 33

Character Representations

ASCII
ISO Latin 1
Unicode
Baudot
EBCDIC

•If you want to display information to the user, you must map the raw data to
characters which the user can easily understand.
•There are many different standards for representing characters. The most
commonly used are ASCII and, in recent years, Unicode.
•ASCII is a seven-bit code, the most significant bit is unused. However, 128 values
do not suffice to represent all characters in all languages in the word. ISO Latin 1
came along to add support for European languages, but it still couldn’t address Far
Eastern languages, for example. This is the reason for Unicode. Unicode supports
many “pages” of mappings. ASCII is one of these pages.
•Baudot and EBCDIC are mentioned for historical reasons.
•Addition resources are:

•ASCII information:
http://dir.yahoo.com/Computers_and_Internet/Data_Formats/ASCII/
•Unicode: http://www.unicode.org/

•ASCII is a code for representing English characters as numbers, with each letter
assigned a number from 0 to 127. For example, the ASCII code for uppercase M is
77. We typically use ASCII codes to represent text, which makes it possible to
display data to users.

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 34

Copyright 1999-2004 Ken Arnold 34

ASCII

American Standard Code for Information
Interchange
7 bit code. Values 128..255 undefined.
Used extensively with serial
communications
Formally defined by ANSI X3.4.
Subset of ISO Latin 1, which also defines
characters for European languages.

•ASCII codes are widely used to transmit data via serial communications links.
Most computer devices have some sort of serial port using common standards like
RS232 which allow easy interconnection of devices. The ASCII code provides a
STANDARD so that different devices recognize the particular characters which are
being sent. This greatly simplifies applications where text or control characters are
being sent between devices.
•As an example, when your SDK talks to the PC it is connected to, it sends and
receives ASCII characters over the serial port connection. Another fairly new way
to add a text or graphic display to a microcontroller is to buy one of the new, low
cost serial LCD modules which are becoming widely available.
•The creators of ASCII made it a 7 bit code. This means that value from 128 thru
255 (anything with a 1 in the most significant bit) are undefined. Different users
define these to be any desired character, however, all users obviously have to
understand what they mean. For example many word processing programs employ
the undefined upper 128 characters as things like EOL, margin, or justification
characters. ASCII characters are typically used and stored in that format in so
called "text" documents. If you use your PC editor to create a basic text document,
you will see that the characters are stored in the file in ASCII format.
•The size and scope of ASCII is formally defined in the American National
Standards Institute (ANSI) standard X3.4.

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 35

Copyright 1999-2004 Ken Arnold 35

ASCII Graphics Characters

Digits, Alphabet, Specials
Digits are 30h..39h
Alphabet

‘A’..’Z’ are 41h..5Ah
‘a’..’z’ are 61h..7Ah

Specials are ‘+’, <space>, ‘>’, <bell>

ASCII Chart is F.3, pg. 363 of Ayala.

•The ASCII graphics characters are comprised of the Digits, Alphabet, and so called Specials.
•The digits start at 30h. That is, the character representing the digit 0 has an ASCII value of 30h.
The rest of the digits 1 thru 9 are successively higher in the table. Converting between the numbers
0..9 and the characters ‘0’..’9’ is very easy. Just add 30h to the number and you get the character,
subtract 30h from the character and you get the number.
•NOTE that although storing characters in this format is not economical, it is at least very portable
!!!!
•The alphabet is represented in rows 4, 5, 6, and 7 of the ASCII chart. As an aside, note that the
Latin Alphabet characters can be represented by a 5 bit character subset. This was often used in the
past to adapt the code to older display types such as teleprinters which only displayed upper case
type.
•How can we convert between lower and upper case ASCII values?
•The specials are mostly the other graphic characters found in lines 2 through 7. These characters
include the SPACE and DEL characters which don't really print anything on the screen.
•Some of the special characters have been designated for international use. For example, the
Swedish Alphabet has 29 characters. The international use characters, 5Eh, 60h, 7Eh can have other
characters substituted as required by the local language. This means that you should avoid using
them if your program has any chance of being used in these countries!
•The characters at 23h and 24h have been reserved for international currency symbols. This means,
for example, that in England the # character may be replaced by the pound sterling symbol, £.
•ASCII collating - Rather than belabor the point, ASCII does not make a particularly good character
set for collating (sorting) purposes. Of course if the sort is based on the alphabetic characters alone,
it works okay but if names are separated by spaces, disaster strikes.

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 36

Copyright 1999-2004 Ken Arnold 36

ASCII Control Characters

Not a “graphic” entity.
Divided into following:

Physical device controls
Logical Communications Controls
Physical Communications Controls
Information Separators
Code Extension Controls

•The ASCII control characters - All the previous characters have one thing in
common - they represent some kind of graphic entity. I.E. They cause a specific
character or symbol to appear on a display device. In contrast, the characters in
ROWS 1 and 2, together with the DEL character at the end of row 7, do not generate
any graphic characters.
•They are known as the control characters and can be roughly divided into the
following characters: Physical Device Controls, Logical Communications Controls,
Physical Communications Controls, Information Separators, and Code Extension
Controls.
•There are considerably more details to the use of control characters which go
beyond the course of this class. Many good references on serial communications
deal with these ASCII control characters in much greater detail. If you are working
with modems and their various protocols, control characters play a big role. Refer
to a good reference for more details.

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 37

Copyright 1999-2004 Ken Arnold 37

ASCII Newline

Newline (/n) or End-of-line (EOL)
May be single control character: Unix
uses 0Ah (line feed).
May be multiple control characters: DOS
uses 0Dh 0Ah (carriage return, line feed)
Transmitter and receiver must agree.

•One other ASCII issue: the ubiquitous NEWLINE character. This character (which
may be a combination of characters), causes no end of problems when talking to
other serial display devices.
•Character 0Dh is the character for Carriage Return (CR). Sometimes this character
returns to the beginning of the next line, sometimes to the beginning of the
CURRENT line.
•Character 0Ah is the character for Line Feed (LF). This character sometimes
returns to the beginning of the next line, and sometimes to the CURRENT column
on the next line. This LF character is also known as NEWLINE but only when
sender and receiver agree! This definition is unfortunately vague in the ASCII spec
itself; thus the problem. This also leads to the unfortunate problem that pure ASCII
text files are not portable over different systems. UNIX, for example, always uses
the New Line Convention, while PC DOS uses CR/LF. To further compound the
problem Apple and Commodore use CR!
•So, when using these characters, know your display device.

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 38

Copyright 1999-2004 Ken Arnold 38

Other Data Encoding

BCD (Binary Coded Decimal)
Fixed point
Floating point
Error Detection and Correction

Parity
Hamming Codes
Block Error Coding

• Decimal numbers are rather ubiquitous in everyday life, and to allow computers
to more easily deal with decimals, another code has evolved name Binary Coded
Decimal or BCD. Basically BCD is the radix-2 coding of the binary data 0..9.
So, the packed BCD coding for 2410 would be (0010 0100)2. The 8051 has
specific instructions to deal with BCD: DA (Decimal Adjust) and the AC flag
of the PSW.

• Fixed point is a mechanism to specify that some number of bits are to the right
of the decimal point. You can thing of the signed and unsigned numbers we’ve
been talking about as fixed point numbers with 0 bits to the right of the decimal
point…that is, they are integers. We’ll talk more about fixed point numbers
later.

• Floating point encoding can be used to define values that approximate real-
numbers, such as π, 1/3, etc. There is no support on the 8051 for floating point
math, consequently it is very slow. Note that the C compiler will insert a
floating point library for you if you try to use floating point variables in C.

• There are many error correction and detection codes available. The most
commonly used in serial communications is “parity”. Another common
encoding scheme is termed “Forward Error Correction” or FEC. Unfortunately,
FEC is a huge topic that could easily consume an entire semester.

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 39

Copyright 1999-2004 Ken Arnold 39

Summary

Numeric Symbology, Unsigned and Signed
Raw data requires context to be
understood: format, range, mapping.
8051 Instruction Set
There are many ways to manipulate
numbers:

arithmetic, logical, boolean.
Character Sets: ASCII

Embedded Controller Programming 1

Copyright 1999-2004 Ken Arnold 40

Copyright 1999-2004 Ken Arnold 40

Homework

Complete hw2-1.asm

Complete hw2-2.asm

