
ECP II 1

1

Embedded Controller Programming

Section 2:
Embedded C Compilers

- Ken Arnold
ecp2@hte.com

2

Embedded Compilers

Embedded Tools are Different!
Embedded vs. Desktop Compilers
Cross Compilers (vs. Native)
Development Configurations
Compiler Extensions
Enhancements
Memory Allocation
Memory Models

ECP II 2

3

8051 C Compilers for PCs

SDCC Free Compiler – Unlimited
Open Source, Windows, Linux++

Keil C Evaluation – Limited to 2K code
Windows, $1695 - now owned by ARM
Current eval version won’t run on SDK

Other 8051 Compilers
Hi-Tech Software www.htsoft.com
IAR www.iar.com

4

Two Compilers

SDCC
Open-source and Free
Command Line

MIDE
IDE for 8051 SDCC
Harder to compile
multi-file projects
Small projects

Keil
Full Feature Tool Chain
Professional
Integrated Tools
Simulator
In System Debugger
Project Management
2K Limited Evaluation

ECP II 3

5

Compiler Setup

Installation and Setup on Win PC
Development Components
User Interface
Libraries

6

Overview of SDCC Tools

SDCC Freeware Compiler
Sandeep Dutta’s C Compiler
Small Device C Compiler
http://sdcc.sourceforge.net

Freeware Assembler(s), Utilities
Command Line
Or IDE from Opcube:

http://www.opcube.com

ECP II 4

7

Screen Shot: Setup SDCC

Add SDCC screen capture video here

8

Screen Shot: Setup MIDE

Add MIDE screen capture video here

ECP II 5

9

SDCC Directories & Docs

Directories in \sdcc
\LIB - C Compiler Library Files
\INCLUDE - .h Header Files
\DOC - Documents
\BIN - Executable Files

Documentation
http://sdcc.sourceforge.net/doc/sdccman.pdf

10

Overview of Keil Tools

Keil uVision IDE
C51 Optimizing C Cross Compiler
A51 Macro Assembler
8051 Utilities

Linker,Object File Converter
Library Manager

dScope Debugger/Simulator
8051 Development Model

ECP II 6

11

The Development Process

IDE (uVision)

C Compiler (C51) Assembler (A51)

C
Library

Linker/Locator (BL51)

RTX51
RTOSLib 51

Library Manager

dScope-51
Source Level Debugger

Hex File for
Emulator or
ProgrammerCPU & Peripheral

Simulator
Monitor-51

Target Debugging

12

Screen Shot: Setup Keil

Add Keil screen capture video here

ECP II 7

13

Important Directories
Directories in \keil

\ASM - Assembler Include Files
\BIN - Executable Files
\DS51 - dScope
\Examples – Sample Applications
\INC - C Compiler Include Files
\LIB - C Compiler Library Files
\MON51 - Target Monitor Files
\TS51 - tScope-51 for DOS IOT drivers
\RTX51 - Keil Real Time Executive

14

Language Extensions - Keil

In Compiler manual: c51.pdf)
8051 Directives – Page 7
8051 Keywords – Page 57

bdata large _task_ bit pdata using code reentrant xdata
compact sbit data sfr idata sfr16
interrupt small

NOTE: These keywords can be disabled by
using the NOEXTEND control directive

ECP II 8

15

Language Extensions SDCC

Most Extensions Same as Keil:
Varibles: data, idata, xdata, code…
Functions: reentrant

There are differences
Parameter passing, byte order…

See section 3 of sdccman.pdf for details
on the SDCC implementation

16

8051 Memory Areas

What are the 8051’s Memory Spaces
Called in C?

Why do we need C memory extensions?

ECP II 9

17

Internal Data Memory

data, idata, bdata keywords

data

idata

bdata
mov a,0..7Fh

mov a,@r0

mov a,20..2Fh

18

External Data Memory

xdata, pdata keywords

xdata pdata

movx a,@dptr movx a,@r0

ECP II 10

19

Code Memory

code keyword
Note: most support external code/data beyond

64K address space, using banked memory

movc a,@a+dptr

20

Memory Type Examples

If a type is omitted, the implicit type is used !
Implicit type depends on memory model...

int var1, var2;
char data var3;
char code text[] = “Enter Value:”;
unsigned long xdata array[500];
unsigned int pdata dimension;
unsigned char xdata
vector[10][4][4];
char bdata flags;

ECP II 11

21

8051 Memory Models: small

SMALL Model (“near” for SDCC & others)
Most often the best choice
All variables default to internal memory

What memory keyword is this?

Stack/Variables share internal space
What are advantages/disadvantages?

Code Size, Speed, Data Size Limitations...

22

Memory Models: large

LARGE: (or “far” in SDCC & others)
Second Choice

LARGE Model Has:
All variables in external memory

What keyword is this?
What are advantages/disadvantages ?

ECP II 12

23

Memory Models: compact

COMPACT:
Seldom used

COMPACT Model:
All variables in one page (256) of ext data
What keyword is this?
Stack in internal space

What are advantages/disadvantages ?

24

8051 Memory Types

code - Program Memory (64K bytes)
accessed by opcode MOVC @A+DPTR
Good for constants, lookup tables
Usually NON-volatile memory

data - Internal Data (128 bytes 0..7F)
accessed directly over lower 128 bytes
Fastest, Smallest code!
a.k.a. “near” in SDCC and others

ECP II 13

25

8051 Memory Types (cont’d)

idata - Internal Data (256 bytes:0..FF)
accessed indirectly by @R0, @R1

bdata - Bit Addressable (16 bytes: 20-2F)
accessed as bit or byte variables

xdata - External Data (64K bytes: 0-FFFF)
accessed indirectly by MOVX @DPTR
a.k.a. “far” in SDCC and others

pdata - External Data (256 byte pages)
accessed indirectly by MOVX @Rn

26

8051 Data Types - page 64

Data Type Bits BytesValue Range
bit 1 … 0,1
signed char 8 1 -128..+127
unsigned char 8 1 0..255
enum 16 2 -32,768..+32767
signed short 16 2 -32,768..+32767
unsigned short 16 2 0..65535
signed int 16 2 -32,768..+32767
unsigned int 16 2 0..65535

ECP II 14

27

8051 Data Types (cont’d)

Data Type Bits Bytes Range
signed long 32 4 -2147483648..+2147483647
unsigned long 32 4 0..4,294,967,295
float 32 4 +/-1.175494 E-38

to +/-3.402823 E+38

Extended types for 8051 Architecture:
bit 1 -- 0,1
sbit 1 -- 0,1
sfr 8 1 0..255
sfr16 16 2 0..65535

28

Nonstandard C Data Types – bit

Keil bit types
Page 65 Bit Type - Example

bit testfunc(bit flag1, bit flag2)
{
...
return (0);
}

ECP II 15

29

Nonstandard Data Types – bit

Bit variables have some limitations;
A bit can’t be declared as a pointer: bit *ptr is invalid
An array of type bit is invalid: bit flags [5] is invalid

Functions using an explicit register bank cannot
return a bit
Only data or idata memory types can be used
with bit
A maximum of 128 bit variables can be used in
a program (why?)

30

Bit Addressable Objects - Keil

Declarations:

int bdata base; // base is in bit addressable mem
char bdata bitarray [4]; // bit addressable array
bit mybit0 = base^0; // bit 0 (lsb) of base

bit barray35 = bitarray[3]^5; // bit 5 of element 3

Assignments:

barray35 = 0; // Clear bit 5 in array element 3
bitarray[3] = 0xFF; // Set element 3 to FF
mybit0 = 1; // Set bit 0 of base

ECP II 16

31

Bit Objects in SDCC

When a variable is declared as a bit, it is
allocated into the bit addressable memory, e.g.:

bit test_bit;

Writing 1 to this variable:
test_bit = 1 ;

Generates the Assembly code:
setb _test_bit

The bit addressable memory consists of 128 bits
which are located from 0x20 to 0x2f in data
memory.

32

Bit Addressable Objects - Keil

Bits can also be used in struct and unions;

bdata struct bitaddr
{

char m1;
int m2;

}tcp;

ECP II 17

33

Differences: SDCC v. Keil

Variable byte order
Keil is big-endian: MS byte at low address
SDCC is little-endian: LS byte at low address

bit and sbit declarations are different
Pointers are declared differently
Parameters passed in different registers
See documents for details

34

Data Types: SFRs - Keil

Special Function Registers;
sfr, sfr16, and sbit types can be used with SFRs
see reg52.h in keil\c51\inc for more examples

sfr P0 = 0x80; // Port 0, defined at address 0x80h
sfr P1 = 0x90; // Port 1, defined at address 0x90h

sfr16 T2 = 0xCCCD; // Timer 2, T2L, T2H 0CCh, 0CDh
// Note order is lo byte, hi byte!

sbit EA = 0xAF; // SFR enable bit in IE register
sbit EA = IE^7 // EA = IE register bit 7
sbit EA = 0xA8^7 // EA = Address A8, bit 7

ECP II 18

35

Vars at Absolute Addresses

SDCC: Variables can be located at absolute
locations using the at keyword;

xdata at 0x8000 int time
/* int at xdata 0x8000 */

This is useful for things that are located at fixed
addresses, such as memory mapped I/O devices!

But this is not enough… need volatile for I/O.

36

Vars at Absolute Addresses

KEIL: Variables can also be located at absolute
locations using the _at_ keyword;

xdata int time _at_ 0x8000
/* int at xdata 0x8000 */

This is useful for things that are located at fixed
addresses, such as memory mapped I/O devices!

Such variables must be OUTside a function def.!

ECP II 19

37

Memory Mapped I/O

From:
mov dptr, #ioport

poll: ...
movx a, @dptr
jnb acc.1, poll

To:
mov dptr, # ioport
movx a, @dptr ;

poll:
jnb acc.1, poll

Like the Government and Microsoft, The
Optimizer Will “Help” You… :)
Optimizer changes:

38

Keyword: Volatile

volatile unsigned char ioport
Volatile tells the compiler that this variable
is something that can be changed by the
hardware (or an ISR or another task…)

volatile keyword prevents optimization of
accesses to the variable

ECP II 20

39

Pointer != Integer

Some C Code Assumes That a Pointer is
the Same Length as an Int

Poorly Designed Code Assigns Ints with the
Value of a Pointer & vice versa

This is NOT the Case in Most Systems!
Truncation & Other Errors Will Occur

In these Versions of C, Pointers can be 1,
2 or 3 bytes...

40

Pointer Types

Generic Pointers – Can point anywhere
in any memory space – standard pointers

Takes 3 bytes
1st Byte is for memory type
2nd Byte – High order byte of offset
3rd Byte – Low order byte of offset
Most library routines use generic pointers
Converted to/from other types by casting

ECP II 21

41

Keil C Generic Pointers

Generic Pointer First Byte Values

Memory Type: Code Value:
idata/data/bdata 0x00
xdata 0x01
pdata 0xFE
code 0xFF

42

Pointer Types

Memory Specific Pointers – These can only
be used with a specific memory type:

idata, data, bdata, and pdata require 1 byte
code and xdata require 2 bytes

These can be much more efficient !!

ECP II 22

43

Pointer Types

Examples of Memory Specific Pointers:

char data *cdptr; int xdata *xdptr;
char data chdata; int xdata x_temp;
cdptr = &chdata; x_temp = 0x1000;

*xdptr = x_temp;
char code *coptr;
char code carray[20]; // array by address
coptr = carray;

44

Pointer Type/Code Efficiency (Keil)

Code Size and (Speed) can be affected by pointer type!!

ECP II 23

45

Pointer Type Conversion

Compilers can convert between memory
specific and generic pointers either explicitly
using type casts or through the compiler

If no function prototype is present, a memory
specific pointer is always converted to a generic
pointer – this can cause an error if function is
expecting a memory specific pointer
Prototype functions in code or with #include

46

Pointer Type Conversions (Keil)

Examples:

ECP II 24

47

Function Declarations

C Function Code Can Be Modified:
Selecting a specific memory model:
result foo (arg) small

Choosing a specific register bank:
result foo (arg) using 3

Specifying an interrupt function:
void foo (void) interrupt 2

Specifying reentrant code generation:
result foo (arg) reentrant

48

Additional SDCC Features

Critical:
Interrupts disabled before, and restored after
int foo () critical { … } ;

Naked:
No register preservation (no auto push/pop)
int foo () interrupt naked { … } ;

Semaphore
Test using atomic test and clear (JBC opcode)

ECP II 25

49

Function Parameter Passing: SDCC

SDCC always uses the global registers
DPL, DPH, B and ACC to pass the first
parameter to a routine
2nd parameter onwards is either allocated
on the stack (for reentrant routines or if --
stack-auto is used) or in data/xdata
memory (depending on the memory
model)

50

Keil Arguments & Return

Parameters can be passed either through
registers (default) or in specific memory
locations
Bit values should be at the end of the
argument list if there are non bit
arguments, otherwise other args are not
passed in registers

ECP II 26

51

Function Return Val - Keil

Return values are always passed in regs

Bit – In carry flag
Char – R7
Int – R6 & R7
Long, float – R4-R7
Generic ptr – R1-R3

52

Interrupt Functions p 92

Interrupt Service Routines (ISR’s) can be
coded just like any other function
Ex: Timer 0 ISR Function using Bank 2:

void timer0 (void) interrupt 1 using 2 {
if (++interruptcnt == 4000) //count to 4000
{ second++; // incr seconds counter
interruptcnt = 0; //clear interrupt cnt

}
}

ECP II 27

53

Interrupt Functions (cont’d)

The contents of ACC, B, DPH, DPL, and
PSW, when required, are saved
automatically on stack
All working registers used in the ISR are
stored and restored by default
Registers R0..7 may be saved…
RETI instruction is used to exit the
function

54

Interrupt Function Rules:

No function arguments can be used with
interrupt functions – WHY ?
No return values can be used with
interrupt functions – WHY ?
You cannot directly invoke an interrupt
function – WHY ?

ECP II 28

55

Interrupt Rules (cont’d)

Don’t call an interrupt function through a
function pointer
Functions that are called by interrupt
functions must use the same register
bank as the interrupt function.
The range of valid interrupts is limited
(see documentation)

56

Interrupt Numbers

Source Interrupt Address
0 External /INT0 0x0003 / 0x4003
1 Timer Flag 0: TF0 0x000B / 0x400B
2 External /INT1 0x0013 / 0x4013
3 Timer Flag 1: TF1 0x001B / 0x401B
4 Serial RI or TI bit 0x0023 / 0x4023
5 Timer Flag 2: TF2 0x002B / 0x402B
and so on ...

ECP II 29

57

Reentrant Functions

Reentrant functions are functions which can be
invoked one or more times before completing
and be shared by several processes (i.e. by
RTOS or interrupt calls)
Allows you to selectively define a function as
being reentrant (for local variables only)
Note that library functions are generally NON-
reentrant!
Necessary but not sufficient to guarantee the
function is reentrant!

58

Reentrant Fns (cont’d)

For each reentrant function, a reentrant stack
area is simulated in internal or external
memory, depending on the memory model used
Small model uses the idata memory
Compact model uses the pdata memory
Large model uses the xdata memory
You can also specify which area to use for a
reentrant function

ECP II 30

59

References

Patterns For Time-Triggered Embedded
Systems
- Michael J. Pont

C and the 8051 vol. I
- Thomas W. Schultz

SDK Manual
The 8051 Microcontroller
- James Stewart and Kai X. Miao

60

Summary

Tool Intro
Data Types
Extensions:

Variables
Memory Types
Special Function Declarations

Embedded Compilers Really Are Different!

ECP II 31

61

Homework

Write your own putchar.c function to use
the same serial port as the SDK monitor:
output to the memory mapped UART on
connector P5 directly rather than through
the SDK monitor
Preferred: use pointers to UART registers
Write putchar.c for both SDCC and Keil
Detailed instructions will be e-mailed

