
Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 1

Embedded Controller 
Programming 2

- Ken Arnold
ecp2@hte.com

Section 3:
C Language for Embedded Systems

Copyright ©2006 Ken Arnold

Copyright (c)Ken Arnold 2

Overview

Structures
Unions
Scope of Variables
Pointers
Operators and Precedence
Program Control & Loops



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 2

Copyright (c)Ken Arnold 3

C Data Types – Structures

An structure is a set of related variables sharing a common name:
struct clocktime
{

unsigned char cstring[15];
unsigned int hour;
unsigned int minute;
unsigned int second;

};
struct clocktime mytime;
struct clocktime catime = {“California”, 10, 00, 00};

Accessing Elements:
catime.minute = 45;
catime.hour = 10;

Copyright (c)Ken Arnold 4

C Data Types – Structures

Structures store data in contiguous areas, 
structures with bit access should be 
located in bit memory area.
Structures can be expanded into structure 
arrays and nested within other structures.
Be careful about size when working with 
uC’s, since size is implementation 
dependant.



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 3

Copyright (c)Ken Arnold 5

C Data Types – Unions

A union allows you 
to group 
variables of 
different data 
types together 
under a common 
name:

union REGS
{
struct WORD
{
unsigned int reg1;
unsigned int reg2;

} x;
struct BYTE
{
unsigned char reg1A;
unsigned char reg1B;
unsigned char reg2A;
unsigned char reg2B;

} y;
}
union REGS register;
register.x.reg1 = 0x13FF; 
register.y.reg1A = 0x13;

Copyright (c)Ken Arnold 6

C Data Types – Unions

A structure keeps it’s members in different places 
at the same time, whereas a union keeps it’s 
members in the same place at different times
Union data items do not have to be the same size
The size of a union is always the same as it’s 
largest member



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 4

Copyright (c)Ken Arnold 7

C Data Types – Type Definitions

A type definition 
(typedef) is used 
to create a 
synonym for a 
given data type.
Use typedefs to 
avoid entering 
more complex 
types or to 
standardize:

typedef struct tagTimeType 
{
unsigned char hour, min, sec;
unsigned int days;

} TIME_TYPE;

TIME_TYPE time, *time_ptr, 
time_array[10];

typedef unsigned char UINT8;
typedef signed char SINT8;

UINT8 status;
SINT8 counter;

Copyright (c)Ken Arnold 8

C – Scope of Variables

The compiler needs to know about all the 
variables in a program
Modular programming supports separate files 
with functions, variables, etc.
The SCOPE of a variable defines range of 
program over which the variable definition has 
some meaning



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 5

Copyright (c)Ken Arnold 9

Scope of a Variable

A piece of code outside the scope of a 
variable cannot refer to that variable by 
name
C recognizes variables found at the top of a 
file (outside any function) anywhere within 
that file
The compiler knows a variable defined 
outside a function only from the point of 
definition to the end of the file. You don’t 
have to define a variable at the top of a file.

Copyright (c)Ken Arnold 10

Scope of a Variable

You can use automatic variables (definition) 
only in the function where you define them. 
They are subject to overlaying unless you make 
them static

Define any parameters passed into a function in 
the function; they are unknown outside it



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 6

Copyright (c)Ken Arnold 11

C – Scope of Variables (Examples)

Variables in a function:
void Foo( void )
{
int x; // May be overlaid.

}
void Bar( void )
{
static int x; // Must stay around.

}

Copyright (c)Ken Arnold 12

C – Scope of Variables (Examples)

Variables in a file:
static int x;// Only known in this file.

int x; // “Global” variable.

extern int x;// Global variable declared
// elsewhere.



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 7

Copyright (c)Ken Arnold 13

C – Pointers

Pointers are one of the most powerful C 
features
We’ve already seen examples with R0,R1,DPTR
Pointers provide INDIRECT access to data in C
C allows the programmer to create Pointer 
Variables which can be used to point to other 
variables or data items.
Common usage includes indexing, accessing, 
and transporting data

Copyright (c)Ken Arnold 14

C – Pointers

Pointer declaration:
char *px; /* px is a pointer to char variables */
char x;   /* x is declared as a char variable */

The actual data type of pointers depends on the 
hardware being used

Pointing to another variable is done as:
px = &x; /* px gets the address of x */

You could also do this:
char *px = &x;



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 8

Copyright (c)Ken Arnold 15

C – Pointer Operations

Pointers can point to other pointers:
char **ppx; // ppx is a pointer to a pointer to char

Can be used when processing multidimensional arrays

Pointers can also point to functions:
void (*f)(int i); // Declaration of a function pointer 

// that takes one int argument and
// returns nothing.

NOTE: This may cause problems with overlaying. Use the OVERLAY 
directive

Copyright (c)Ken Arnold 16

C – Pointer Operations

Pointers can be generic or memory specific on the 8051

Examples:
int *p1; // This takes 3 bytes: “Universal Pointer”
int xdata *p2; // This takes 2 bytes of storage
int idata *p3; // This takes 1 byte of storage
p1 = p2 = p3; // These types can be converted



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 9

Copyright (c)Ken Arnold 17

C – Pointer Operations Continued

char x = ‘A’; char *pt; char array[10];

points to 6th element of the array: array[5].pt+5

first element in array assigned value ASCII B.*pt = ‘B’

points to first element in array.pt = array

stores the value v in the location pointed to 
by pt, v has type char.

*pt = v

references the value pointed to by pt, type is 
char.

*pt

Checks to see if pt is NULL.pt == 0

Assigns “null” pointer to pt.pt = 0

sets pt pointing to x.pt = &x

produces a pointer to x.&x

Copyright (c)Ken Arnold 18

C – Pointers to Arrays

The Name of an Array is a pointer constant in C
The name points to the first element of the array:
char temp[10];
char *cptr;
cptr = temp;
Pointer constants can be used like any other constant 
except they follow rules imposed by the data it’s 
pointing to.
Temp+1 points to next element of the array, temp[1]
temp[n] and *(temp+n) do the same thing



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 10

Copyright (c)Ken Arnold 19

C – Pointers to Arrays

&temp[2] is the address of the third element of array 
temp[ ]
These concepts also apply to arrays of higher 
dimensionality:
char temp[30][40];
temp[0] is a pointer constant that is the address of the 
first row of the array
temp[29] is a pointer constant to the last row of the 
array
*(*(temp+n)+m) is temp[n][m]
You can also combine pointers in an array of pointers

Copyright (c)Ken Arnold 20

Pointers to Structures and Unions

Pointers to 
structures allow 
any member to be 
easily accessed:

Pointers to unions 
can be defined and 
declared in the 
same fashion.

Access is done by:

typedef struct tagMeasure
{
int time;
int delay;
char pattern;

} MEASURE;
MEASURE x, *ptr;
ptr = &x;

ptr->delay = 30;
ptr->pattern = 0x42;



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 11

Copyright (c)Ken Arnold 21

C – Precedence Operations

Precedence rules tell compiler how to 
interpret lines with multiple operations, 
for example:

A + B * C becomes:  A + (B*C)
Not always obvious: I && J == true

Use parenthesis if there is any question 
about precedence!  i.e. for (A+B)*C

Copyright (c)Ken Arnold 22

C – Precedence Operations

Be careful in I/O port masking (‘>’ has 
precedence over the ‘&’):

while (porta & 0x20 > 0) { };
while ((porta & 0x20) > 0) { };



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 12

Copyright (c)Ken Arnold 23

C Operators and Precedence

Left to Right:
() Function call
[] Array element reference
-> Pointer to struct/union member
. Structure member reference
Right to Left:
- Unary minus
+ Unary plus
++ Increment
-- Decrement
! Logical negation
~ Ones complement
* Pointer de-reference
& Address
sizeof Size of an object
(type) Type cast (conversion)

Refer to the 
K&R C book for 
the complete list.

Copyright (c)Ken Arnold 24

C – Program Control

Looping and Branching
Decision making can be done through several 
structures in C

If/then/else
Switch/do case
Conditional operator
Do/while loops
Iteration (for loop)



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 13

Copyright (c)Ken Arnold 25

C – Program Control

C can be a structured programming language
This means:

Avoid spaghetti code!  Use goto sparingly
Program never jumps into or out of a routine without:

Saving and restoring stack and other pertinent registers
Interrupts are a special case of this

Stack corruption is not easy with acceptable programming
Structured programming is aided by modularity
Structured programming is aided by encapsulation
MAKE FLOW CHARTS for your program before coding!
The basic element of a structured program is the block.

Copyright (c)Ken Arnold 26

C – Program Control
Branching Constructs

If/Then/Else can be used for program 
branching.
In assembly we use jz, jnz, jb, jnb, jc, etc.
The C compiler does this for us.

P1 != 0
YesNo

C = 0 C = 20

if (P1 != 0)
C = 20;

else
C = 0;



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 14

Copyright (c)Ken Arnold 27

C – Program Control
Branching (if/else-if)

Example 1:

if (a>b)
if (a>d) 
c=10;
else c=0;

Example 2:

if (a>b)
if (c>d) e=20;
else if (a>c) 
if (d>f) e=30;
else e=10;
else e=0;

Copyright (c)Ken Arnold 28

Branching (if/else-if)

• Example 3:
if (a>b)
{
if (a>d)
c=10;

else
c=0;

}

if (a>b)
{
if (c>d)
e=20;

}
else if (a>c)
{ 
if (d>f)
e=30;

else 
e=10;

}
else 
e=0;

• Example 4:



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 15

Copyright (c)Ken Arnold 29

C – Program Control
Branching (switch)

Switch/case can 
also be used for 
branching:

switch ( k )
{
case 0:
x = 1;
break;

case ‘a’:
c = ‘x’;
break;

default:
x = 0;
c = 0;
break;

}

Copyright (c)Ken Arnold 30

C- Program Control
Branching (conditional)

C has a conditional operator which is 
“shorthand” for if/else kind of decision:
C = ( P1 != 0 ) ? 20 : 0;

P1 != 0
YesNo

C = 0 C = 20



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 16

Copyright (c)Ken Arnold 31

Looping (while)

C provides several looping mechanisms:

while (cond==TRUE)
{
do_some_operation;

}

Copyright (c)Ken Arnold 32

Looping (while)

Use while ( 1 ) for an infinite loop.
Exit a loop with the “break” instruction:

while ( 1 )
{

do_some_operation;
if ( need_to_exit )
break;

}



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 17

Copyright (c)Ken Arnold 33

Looping (do-while)

The do-while ALWAYS executes the loop 
at least once!
do
{
do_some_operation;

} while (cond == TRUE);

Copyright (c)Ken Arnold 34

C – Program Control
Looping (for-loop)

Looping a fixed number of iterations can 
be done with the for-loop:
for (I=0; I<100; ++I)
{
do_some_operation;

}
Shorthand for a while loop, including an 
initialization step, test step, and 
modification step.



Embedded Computer Programming II

Copyright 1999-2001 Ken Arnold 18

Copyright (c)Ken Arnold 35

Summary

Data Structures
Operators and Precedence
Program Control & Loops
Tool-Specific Issues

Copyright (c)Ken Arnold 36

Reading and Homework

Read chapters 4 and 6 in the text, about switch 
inputs and real time constraints to prepare for 
the next lecture (Chapter 5 should be skimmed)
Submit one or more class project ideas
NOTE: The sample keypad scanning code on the 
web site has a bug that causes the keys on the 
top row to do nothing!  For extra credit, fix the 
bug and send the corrected source file to 
ecp2@hte.com


