
ECP II 1

Copyright (c)2006 Ken Arnold
051221 1

I/O Device Programming in C
Part 1: Input and Interrupts

Ken Arnold

Discovery.com Embedded Controller Programming II

2

Overview

Basic Input Devices
Switch Input
Matrix Keypad Input
Multiplexing
Interrupt Driven I/O

ECP II 2

3

I/O Types

Standard Peripherals
General Purpose I/O Pins
Serial Port, Counter/Timers
Memory Mapped I/O
Enhanced Peripherals:

PWM, A/D, PCA

Bus Interfaces:
SPI/Microwire, I2C, USB, CAN, 1-Wire

4

Input

Input (Reading) the I/O Ports
Set I/O Line High (1) to use as Input
External Circuit Pulls I/O Pin Low for 0
Switches Must Be Debounced

Reading a Matrix Keypad

ECP II 3

5

Switch Inputs

8051 Ports have internal pull-ups
Connect switch between I/O pin and Gnd
Input=1 when Switch is OFF
Input=0 when Switch is ON

Switches Bounce!
Typical bounces last 1 to 50 milliseconds
Occurs most when contacts close

6

Port I/O for the 8051 family

Ports are SFRs in Internal Data Memory
Port is 0xff after Reset (input mode)
Port 1 is uncommitted - location 0x90
Bit addressable from bits 0x90 to 0x97

LSB address = 0x90, MSB address = 0x97

SDK Port 1 on DIP plug pins 1..8
P1 = 0xff // sets all bits of Port 1 high

ECP II 4

7

Simplified Port Circuit

Modified Open-Drain
Constant current pull-
up (Current Source)
Switch is a pull-down
(FET Sinks Current)

Active Switch sinks
more current, so
Sink current is large
compared to source

Typical SDK
port 1 Ioh
= ~50uA

Typical SDK
port 1 Iol =

3 to 15 mA

MUST BE current
limited using a
resistor

8

Switch Input Circuit

Internal CPU pull-up
for sourcing current

Switch open
Logic level = 1 (high)

Switch ON pulls down
pin, sinking current

Switch closed
Logic level = 0 (low)

Switch Contacts Bounce!

ECP II 5

9

Switch Bounce

Mechanical Contacts
Bounce, Due to
Elastic Collision

Can be De-Bounced
with Hardware:

Usually Done in Code

10

Debouncing with Software

Look for first transition low (ON)
Ignore additional switch transitions for
debounce period, typically ~50 mS
If switch is still on, key is down.
Look for first transition high (OFF)
Ignore transitions for ~50 mS
If switch is still high, key is up.

ECP II 6

11

Switch and Keyboard Input

Switches, Keypads
Simple switch inputs
Multiplexed Keypads
Multiplexed Keyboards

Intelligent Keyboards
PC Style
ASCII

12

Switch & LED

GND
20

Vdd
(+V bus)

Vss
(GND bus)

1 2 3 4 5 6

40

DIP plug has same pin-out as 8051

Ribbon cable to SDK

flat

ECP II 7

13

Simple Switch Matrix

14

Switch Matrix

Multiplexed row and column:
Switches organized in Rows/Columns
Switch Shorts row line to column line
Walking zero on rows to activate one row
at a time
Check for low level on column inputs to
determine which key is pressed

ECP II 8

15

Switch Matrix

Switches organized as Row/Column
Switch shorts row line to column line
Walking zero on rows to activate one row
at a time
Check for low level on column inputs to
determine which key in the current row is
pressed

16
Column 2

+V

Row 1

Row 2

Row 3

Row 4

Column 1 Column 3
Column 4

Matrix Keypad Interface

• Generic Keypad

• Requires Pull-ups

• Not Required for
I/O Pins with Built-
in Pull-ups

ECP II 9

17

Multiplexed Switch Matrix

18

Scanning the Switch Matrix

ECP II 10

19

Why Multiplex I/O?

It saves the limited I/O pins on a uC
Non-multiplexed requires 1 bit per I/O:

16 switches requires 16 I/O pins

Multiplexing shares I/O lines:
16 switches require 4+4 = 8 lines

This can be done for displays as well, due
to persistence of vision effect

20

Keypad Connections

Keypad is jameco.com part #169244, with
an 8 pin single row male header, with pin
spacing = 0.1” soldered to the keypad, so it
can be plugged directly into the solderless
proto board.

ECP II 11

21

Keypad Connections to CPU:

88Row 1P1.7

77Col 4P1.6

66Col 3P1.5

55Col 2P1.4

44Row 4P1.3

33Col 1P1.2

22Row 3P1.1

11Row 2P1.0

Keypad Pin#CPU Pin#KeypadCPU Signal

Connections are shown for the sample keypad1.c program, which uses a
software driven, bit-banged interface.

22

Connections to Keypad

Keypad wiring
For sample
program:

keypad1.c

Keypad
Pin 1
goes
here

Pin 2 Pin 8

5 pins in each
column are

interconnected

http://hte.com/uconline/ecp/keypad1.exe

Only the 8 yellow wires are
needed for this example – the
other wires are used for the
LCD demonstration.

ECP II 12

23

8052 Pin Definitions

24

Connections to SDK Cable

1 2 3 4 5 6 7 8

40(+5V) 30 21

DIP plug has same pin-out as 8051

Red stripe
on cable

GND
13 14 15 20

Vss (Gnd bus)

Vdd (+V bus)

Vdd (+V bus)

Vss (Gnd bus)

Yellow
wires from

keypad

ECP II 13

25

SDK Cable to Keypad

26

Scanning a Keypad

unsigned char code row[] = {0xEF, 0xDF, 0xBF, 0x7F };
/* for strobing each row */

/* 4 MSBs are row outputs, 4 LSBs are col inputs */

unsigned int bdata keys /* for storing key info */

void keypress (void) interrupt 0 // ISR for /INT0
{
unsigned char I;
keys = 0xFFFF; // get ready to input key press data
for (I=0; I <= 3; I++)
{
P1 = row[I]; // strobe low one row at a time
keys = (keys<<4) | (P1&0x0F);

// read and store info from each column
}

ECP II 14

27

Keyboards - Matrix

Reduces the number of I/O pins req’d
Software Driven is lowest cost

Increases Software Complexity
MUST debounce in software

Hardware Multiplexed (e.g. 74xx922)
Independent, interrupt driven
Hardware compatibility issues

28

Hardware Abstraction

I/O Driver Characteristics:
Hardware Design Specific
Processor Architecture Dependent
Uses Compiler-Unique Extensions (Non-ANSI)

Separate and Organize Your Code:
ANSI Standard Application Code
Hardware Abstraction Layer Isolates ANSI
Application Code From non-ANSI code

ECP II 15

29

Standard Port Input

Hardware Abstraction Example
Data Input via Port 1 (8 position DIP switch)

#include <reg51.h>

char 8DIPswitches (void)

{

return (P1); /* return value of P1 */

}

This code should be identified as hardware specific…

30

Standard Port I/O

Data Output via an 8 bit wide Port;
void 8LEDs (char outval)

{

P1 = outval;

}

This code should be the only code that outputs to the
LEDs – other ANSI standard C functions can call
this function which uses non-ANSI features of the
compiler.

ECP II 16

31

Serial Port Setup

// Configure Serial Port & Timer

void setup_serial (void)

{

SCON = 0x40; /* 8 bit UART */

TMOD = 0x21; /* 0x21;

TH1 = TL1 = 0xF3; /* 1200 baud at 12 Mhz */

TR1 = 1; /* Start Timer 1 */

TI = 1;

}

32

Serial Port Output

void main (void)
{ // Send Serial Data …
setup_serial(); // initialize the port
while (1)

{
while (TimerOV==0) // until timer overflow
send_serial(*string); // send string

}
}

ECP II 17

33

Crude Software Time Delay
(bad idea!)

/* FROM FILE time.c */
/**
* FUNCTION delaymsec *
* This function is used to generate a delay of from 1 *
* to 255 milliseconds based on the value of ms passed to *
* it. The functional delay is based on the basic count *
* equation for c1 and c2 where; *
* *
* delay = approx ms*(9+3*count1+2*count1*count2)+10 *
* This delay includes call and return times. *
* To change delay cycles, use equation for inner loop *
* expression; *
* *
* for (count1=11;count1>0;count1--) *
* for (count2=40;count2>0;count2--); *
* *
* For this inner loop, the approximate delay is; *
* cycles = 1+3*count1+2*count1+count2 *
* *
***/

34

void delaymsec (unsigned char ms)
{
unsigned char i,count1,count2;
for (i=ms; i>0; i--)
{ /* The delay for this function is ~922 cycles with */

/* count1=11, count2=40 */
for (count1=11;count1>0;count1--)

for (count2=40;count2>0;count2--);
}

}

void delaysec (unsigned char sec)
{
unsigned char i,j;
for (j=0; j<sec; ++j)

for (i=0; i<4; ++i)
delaymsec(250);

}

Crude Time Delay (cont’d)

Delay depends on Compiler
options, version, and more…
delay == Unpredictable!!

ECP II 18

35

The Right Way to Delay

Use a timer, and its interrupt
Interrupt on Timer Overflow
Count the number of overflows in
Interrupt Service Routine (ISR)
Do something when the delay time has
expired

36

What is an Interrupt?

Imagine a pushbutton that forces the CPU
to call a specific program subroutine.

When the switch is closed, it effectively CALLs
a special subroutine (the Interrupt Service
Routine, or ISR).
This routine can be called independently of
the instruction executing when it occurs.
This is literally what is done for many
microcontroller interrupt applications.

ECP II 19

37

Hardware Interrupts

Hardware Interrupts: a “hardware” CALL
Asynchronous to program

Can occur at any point in program execution
Timing is unrelated to main program execution

Forces the CPU to call interrupt subroutine
Interrupt Service Routine (ISR)

Allows timely response to an event
Important events are processed on demand

38

8051 Interrupt Structure

Multiple, Nested, Two Priorities
Fixed Interrupt Vectors
Interrupt Sources:

External: Interrupt /INT0, /INT1
Level or Edge Sensitive Programmable

Internal:
Timer/Counters 0, 1, 2
Serial I/O

ECP II 20

39

Interrupt Events
External Interrupt Sources

/INT0, /INT1, Low Level or Falling Edge
Internal Interrupt Sources

Timers 0, 1 and 2 on Overflow
Serial Port Transmit Empty or Receive Full
Others: A/D conversion complete...

Reset (sort of…)
Non-maskable, forces jump to addr Zero

40

External Interrupts
8051 Has Two:

External Interrupt 0 and 1 (/INT0, /INT1)
IE0 is interrupt 0 flag, IE1 is interrupt 2 flag
/INT0 vector starts at base+003, INT1 base + 13h

Level or Edge triggered

Using external interrupts
Global Enable (EA “Enables All” interrupts)
Must also be individually enabled
Must be configured

Priority (IP Register)
Edge/level Sensitive: IT0, IT1

May need to be debounced

ECP II 21

41

Timer Interrupt

#include <reg51.h>
#include <stdio.h>
#define RELOADH 0x3C
#define RELOADL 0xB0
extern unsigned int tick_count;

void timer0 (void) interrupt 1
{

tick_count++; // increment global tick count
}

42

// external interrupt 0:

// the /INT0 pin ISR Function

void int0 (void) interrupt 0
{

LED = ON; // indicate start of ISR execution
ea = 1; // allow higher level ints to occur
/* ... Handle external event here */
LED = OFF; // indicate end of ISR execution

}

Interrupt Functions

ECP II 22

43

8xx2 Interrupt Vectors

Int# Address, Source:
0 0003h, IE0 - External Interrupt 0
1 000Bh, TF0 - Timer 0 OF
2 0013h, IE1 - External Interrupt 1
3 001Bh, TF1 - Timer 1 OF
4 0023h, TI or RI - Serial Tx/Rx
5 002Bh, TF2 - Timer 2 OF

may be others…

44

Reset and Interrupt Vectors
; SDK Interrupt Vectors offset by 4000h

base equ 4000h ; SDK code in RAM
org base ; addr of user code
jmp start ; Reset entry point
org base+3 ; Int vector 0: External INT0
jmp int0isr ; jump to INT0 ISR
org base+0bh ; Int vector 1: Timer0
jmp tmr0isr ; jump to Timer0 ISR
etc… ; vectors every 8 bytes

ECP II 23

45

Interrupt Enable IE 0A8h

EA Enable All Interrupts (Global enable)
ES Enable Serial Port
ETx Enable Timer x
EXx Enable External Interrupt x

7 6 5 4 3 2 1 0

EA - ET2 ES ET1 EX1 ET0 EX0

46

Interrupt Priority IP 0B8h

0==Low Priority, 1==High Priority
PS Enable Serial Port
PTx Enable Timer x
PXx Enable External Interrupt x

7 6 5 4 3 2 1 0

- - PT2 PS PT1 PX1 PT0 PX0

ECP II 24

47

Priority (cont’d)

Within a level, simultaneous interrupts are
processed according to priority shown:

1: IE0 External Interrupt 0
2: TF0 Timer Interrupt Flag 0
3: IE1 External Interrupt 1
4: TF1 Timer Interrupt Flag 1
5: RI or TI Transmit/Receive Interrupt
6: TF2 Timer Interrupt Flag 2

48

Clearing Interrupt Requests

These are cleared when CPU calls ISR:
IE0 and IE1 External IRQ Flag
TF0, TF1, TF2 Timer IRQ Flags

Must be explicitly cleared by program:
TI Serial Port Transmit Buffer Empty
RI Serial Port Receive Buffer Full
ex: CLR TI or CLR RI inside the serial ISR

ECP II 25

49

External Interrupt Requests

IE0 External Interrupt 0 Flag
IE1 External Interrupt 1 Flag

IE0 in TCON.1, IE1 in TCON.3
Detects when INTx input pin goes low
IEx flags set when the INTx pin goes low
IEx Flags are cleared when ISR is called

50

Timer Control TCON 088h

TFx Timer x Overflow Flag (input)
TRx Timer x Run Enable (control)
IEx Ext Int Detect Flag (input)
ITx Ext Int Edge Sensitive 1=Edge 0=Level

7 6 5 4 3 2 1 0

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

ECP II 26

51

Timer Interrupts

Timers interrupt on overflow if enabled
Count increments every 12 clock cycles

Mode 1 used for a single 16 bit delay
One-shot delay, then it must be reloaded

Mode 2 reloads automatically, 8 bit delay
TLx reloaded with THx when TLx overflows
Results in constant interrupt frequency

Load timer with 2’s complement of count

52

Timer Interrupts

Clock Tick
Tick ISR Keeps Time
Constant Interval (e.g. timer mode 2)

Typical OS Functions:
Time of Day Uses Tick Time
Fixed Time Delays
Scheduler Allocates CPU Time

ECP II 27

53

Watchdog Timers

Timer Count is Cleared Periodically
If Not Cleared, Overflow Causes Reset
Code Detects “Warm Start” Condition

“Cold Start” is the Initial Power-On Reset
Unique Flag Stored in Volatile Memory

“Warm Start” Should be Different
Graceful Recovery and Resume Operation

54

Interrupt Keypad Input
ISR Executes

Store row/column number
Return to main

Pressing a key
Activates Interrupt
Invokes ISR

ECP II 28

55

Program Structure

Interrupt Driven Programs have 3 parts:
Initialization

Getting everything into a known state

Main Program (not event driven)
Performs non-time critical processing

Interrupt Service Routines (ISRs)
Processes the events

56

Initialization

Only happens once (hopefully!)
Puts all variables, memory, in known state

Initialize variables, flags, I/O, IRQs

Sets up CPU interrupt control system
Initialize interrupt priorities, enables
Clear pending interrupt requests

Enables interrupts to occur

ECP II 29

57

Main Program

Processes non-critical functions
The things that can be done at any time

Anything which is not tied to an event
When there’s nothing better to do:

Put CPU in Low Power “Sleep” or Idle Mode
Execute software diagnostics
Execute hardware diagnostics
May just wait in a tight loop

58

Interrupt Service Routine

External event causes interrupt request
CPU interrupts the running program
CPU saves PC on stack and “CALLs” the ISR

When an interrupt is processed:
ISR must save the processor state
ISR processes the event
ISR restores the processor state
ISR returns to the interrupted program

ECP II 30

59

Summary

Basic I/O
Switch Input
Matrix Keypad Input
Multiplexing I/O
Interrupt Driven I/O

60

Homework

Work on Your Class Project!
Extra Credit:

Count the number of contact closures using
Port 1 pins, and display the number, not
including bounces
Debug keypad1.c – row 1 is inoperative

