[1SS wARE

Getting Started and
Creating Applications

with yVision2 and the C51
Microcontroller Development Tools

User’s Guide 09.99

Keil Software

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

Copyright © 1997-1999 Keil Elektronik GmbH and Keil Software, Inc.
All rights reserved.

Keil C51™ and pVision™ are trademarks of Keil Elektronik GmbH.
Microsoft”, and Windows™ are trademarks or registered trademarks of
Microsoft Corporation.

PC" is a registered trademark of International Business Machines Corporation.

NOTE
This manual assumes that you are familiar with Microsoft Windows and the
hardware and instruction set of the 8051 microcontrollers.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Getting Started and Creating Applications iii

Preface

This manual is an introduction to the Keil Software development tools for the
Infineon Technologies (formerly Siemens) 51 and ST Microelectronics ST10
family of microcontrollers. It introduces new users and interested readers to our
products. This user’s guide contains the following chapters.

“Chapter 1. Introduction” gives an overview and discusses the different products
that Keil Software offers for the 8051 microcontroller families.

“Chapter 2. Installation” describes how to install the software and how to setup
the operating environment for the tools.

“Chapter 3. Development Tools” describes the major features of the uVision2
IDE with integrated debugger, the C compiler, assembler, and utilities.

“Chapter 4. Creating Applications” describes how to create projects, edit source
files, compile and fix syntax errors, and generate executable code.

“Chapter 5. Testing Programs” describes how you use the uVision2 debugger to
simulate and test your entire application.

“Chapter 6. uVision2 Debug Functions” discusses built-in, user, and signal
functions that extended the debuging capabilities of pVision2.

“Chapter 7. Sample Programs” provides several sample programs that show you
how to use the Keil 8051 development tools.

“Chapter 8. RTX-51 Real-Time Operating System” discusses RTX-51 Tiny and
RTX-51 Full and provides an example program.

“Chapter 9. Using on-chip Peripherals” shows how to access the on-chip 8051
peripherals with the C51 compiler. This chapter also includes several
Application Notes.

“Chapter 10. CPU and C Startup Code” provides information on setting up the
8051 CPU for your application.

“Chapter 11. Using Monitor-51" discusses how to initialize the monitor and
install it on your target hardware.

“Chapter 12. Command Reference” briefly describes the commands and
controls available in the Keil 8051 development tools.

Preface

Document Conventions

Examples

README.TXT

Courier
Variables

Elements that
repeat...

Omitted code

[Optional Items]]
{ opt1 | opt2'}

Keys

Point
Click

Drag

Double-Click

This document uses the following conventions:

Description ‘

Bold capital text is used for the names of executable programs, data files,
source files, environment variables, and commands you enter at the
command prompt. This text usually represents commands that you must
type in literally. For example:

CLS DIR L51.EXE

Note that you are not required to enter these commands using all capital
letters.

Text in this typeface is used to represent information that displays on
screen or prints at the printer.

This typeface is also used within the text when discussing or describing
command line items.

Ellipses (...) are used to indicate an item that may be repeated.

Vertical ellipses are used in source code listings to indicate that a
fragment of the program is omitted. For example:

Void main (void) {

while (1);

Optional arguments in command lines and optional fields are indicated by
double brackets. For example:

C51 TEST.C PRINT [[(filename)}l

Text contained within braces, separated by a vertical bar represents a
group of items from which one must be chosen. The braces enclose all of
the choices and the vertical bars separate the choices. One item in the list
must be selected.

Text in this sans serif typeface represents actual keys on the keyboard.
For example, “Press Enter to continue.”

Move the mouse until the mouse pointer rests on the item desired.

Quickly press and release a mouse button while pointing at the item to be
selected.

Press the left mouse button while on a selected item. Then, hold the
button down while moving the mouse. When the item to be selected is at
the desired position, release the button.

Click the mouse button twice in rapid succession.

Getting Started

vStarted and Creating Applications v

Contents

Chapter 1. Introduction 1
IMANUAL TOPICS c.vvieerieiiieiiiieeiie et eeteerte ettt et e et e e tte e e e etaeeseeestaeeseeessaeenseeensaesnseennses 2
Changes to the DOCUMENTATIONovueiruieriieiieiiesieiceie ettt eee e 2
Evaluation Kits and Production Kits..........cccccerieiiiiiiniiniiieeeeeceee e 3
TYPES OF USEIS ..eeeeiieeiiieeiie et ette ettt e ette et e et e et eeteeetaeeteesstaeeseeensaeenseeensaeesneenses 3
ReqUEStING ASSISTANCE.cueeiieiieiieeiieetieieee ettt ettt st 5
Software Development CYCIEcccviiriiieiiiiiieeiie ettt s sve e 6
ProdUCE OVEIVIEWoueiiiiiiiiiii ettt ettt ettt sttt et sete e e e s 8

Chapter 2. Installation 11
SYStemM REQUITEIMENES.......eevieeiiriiieeiiesieeeteeeieeeveesteesteesveessseessseessseessseensaeenssesnseas 11
Installation DEtailscc.eeriieiiiiieiieieet ettt 11
FOLA@r STUCTUTIE ...t ettt 13

Chapter 3. Development Tools 15
pVision2 Integrated Development Environmentcoocceeeeiivienieneenennenieneene. 15
C51 Optimizing C Cross COMPILEToouiriirieiieiieieriesitescee et 22
AS51 MaCIO ASSEIMDIET ...coutiiiiiiiieiiieiec ettt 38
BL51 Code Banking Linker/LoCatorc.coouieiiiiiiieiienieniceieetee e 40
LIBS51 Library Manager.........ccueiierieeniieiieiieiieeiteeitesteesiee e ste et et saeesaeeseeenseeneeas 44
OCS51 Banked Object File CONVETLETccc.eeivieeiieiiieeieecieeeie et e e sveesveesine e 45
OHS1 Object-HeX CONVETLETcccvieiieeriieeiieeieeciieeseeeieeesiteeteeeseeeesseeeseeeeseneenseeenes 45

Chapter 4. Creating Applications 47
Create @ PIOJECt. . cuiiiiiiecii ettt et e et e et e et eeaee e tbeeaeeentaeeseeenes 47
Project Targets and File GrOUPScc.eeoueeiirieiienieneee et 54
Overview of Configuration Dialogs...........cooeviiiieiiiiiniiiieneecce e 56
LLVISION2 LIS, ...eeeveeieiieeiieesiieeciteestte et et e e teesveeeaeeseveesaaeestbeessaeentaeesseesnseeanseennses 58
Writing Optimum COdeoo.eeiuieiiiiiiiiiiies ettt 67
TIPS ANA TTICKS ..eienviieiii ettt ettt e e steeesbeesnteeenbeesnseeensee s 70

Chapter 5. Testing Programs 81
LLVISION2 DEDUZZETeeeiieeeiieiiieeiieeieeeiee st eete et e eieeebeeebeeseveesaseesteessseesnseessseensseas 81
Debug Commands........c..eoruierieriieiieieeieetest ettt sttt b e aeas 95
EXPIESSIONS ...eevvieiiiieeiieciteeieeete et e et e et e et eesteeestbe e saeessbeessseessseensseessseensseessseensseens 97
TIPS ANA TTICKS ..veeeiieiieeieee ettt s e e e e ssaeessbeeenbeeennas 114

Chapter 6. uVision2 Debug Functions 119
Creating FUNCLIONSeiiiieeiie ittt sttt ettt teesteeesaeestee e teeesbeesseaeenseesnsaeenseeas 119
INVOKING FUNCLIONS ...ovvviiiiieiiieciieciie ettt ettt e e e e e snaeessaeennnas 121
FUNCHION CIASSES ...ttt ettt st 121
Differences Between Debug Functions and C............cocoiiiiieniniinicnienienceceee 138
Differences Between pVision2 and dSCOPE........cvevveeriiinieeiiieeieeciiecieecvee e 139

Chapter 7. Sample Programs 141

HELLO: Your First 8051 C Programccccceiieviiniiniiiiiieeieseseececeeceee e 142

vi

Contents

MEASURE: A Remote Measurement SyStemcocceeevveeenueenneens

Chapter 8. RTX-51 Real-Time Operating System

TNErOAUCTION. ...c.eveiiiiccie e ettt e ea
RTX166 Technical Dataccceevevieeviiiiieeieecieeeiee e
Overview of RTX166 ROULINES.........cceeevirevrieiiriieiieciie e
TRAFFIC: RTX-51 Tiny Example Program..............ccoecvvvvervennennee.
RTX Kernel Aware Debugging..........ccccveeverieneeiieiienieenesie e

Chapter 9. Using on-chip Peripherals
Chapter 10. CPU and C Startup Code

Chapter 11. Using Monitor-51

Chapter 12. Command Reference

pVision 2 Command Line Invocationcceecveeverieneeneenieeneeenenne
CS51/C251 COMPIICT ..cevveiieiieciieteit ettt
L51/BL51 Linker/LOoCator.......cccvirereeieienienieneeeeeicereneee e
L2571 LinKer/LOCatorccuevverueeiieiiieieniieieeicetetee et
LIB51 /L1251 Library Manager Commands...........ccccoceverereeeennennens
OC51 Banked Object File CONVErtercccevvervierieereeeieeieieeeeennens
OHS1 Object-HeX CONVEITETcveeeveeeieiieiieieeeeseeseeesieeeeeneeenaenenens
OH251 Object-HeX CONVEILETcc.eevveeieeieriesieseienieenieeeeeveseeeneeens

Index

Getting Started and Creating Applications 1

Chapter 1. Introduction

Thank you for allowing Keil Software to provide you with software development
tools for the 8051 family of microprocessors. With the Keil tools, you can
generate embedded applications for multitude of 8051 derivatives.

NOTE
Throughout this manual we refer to these tools as the 8051 development tools.
However, they support all derivatives and variants of the 8051 microcontroller

family.

The Keil Software 8051 development tools listed below are the programs you
use to compile your C code, assemble your assembler source files, link your
program together, create HEX files, and debug your target program. Each of
these programs is described in more detail in “Chapter 3. Development Tools”
on page 15.

m uVision2 for Windows™ Integrated Development Environment: combines
Project Management, Source Code Editing, and Program Debugging in one
powerful environment.

m C51 ANSI Optimizing C Cross Compiler: creates relocatable object modules
from your C source code,

m AS51 Macro Assembler: creates relocatable object modules from your 8051
assembler source code,

m BL51 Linker/Locator: combines relocatable object modules created by the
compiler and assembler into the final absolute object module,

m LIB51 Library Manager: combines object modules into a library which may
be used by the linker,

m OHS51 Object-HEX Converter: creates Intel HEX files from absolute object
modules,

m RTX-51 real-time operating system: simplifies the design of complex, time-
critical software projects.

The tools are combined into the kits described in “Product Overview” on page 8.
They are designed for the professional software developer, but any level of
programmer can use them to get the most out of the 8051 hardware.

Chapter 1. Introduction

Manual Topics

This manual discusses a number of topics including how to:

Select the best tool kit for your application (see “Product Overview” on page
8),

Install the software on your system (see “Chapter 2. Installation” on page
11),

Overview and features of the 8051 development tools (see “Chapter 3.
Development Tools” on page 15),

Create full applications using the pVision2 integrated development
environment (see “Chapter 4. Creating Applications” on page 47),

Debug programs and simulate target hardware using the pVision2 debugger
(see “Chapter 5. Testing Programs” on page 81),

Access the on-chip peripherals and special features of the 8051 variants using
the C51 compiler (see “Chapter 8. RTX-51 Real-Time Operating System

” on page 157),

Run the included sample programs (see “Chapter 7. Sample Programs” on
page 141).

NOTE

If you want to get started immediately, you may do so by installing the software
(refer to “Chapter 2. Installation” on page 11) and running the sample
programs (refer to “Chapter 7. Sample Programs” on page 141).

Changes to the Documentation

Last minute changes and corrections to the software and manuals are listed in the
RELEASE.TXT files. These files are located in the folders UV2 and
CS51\HLP. Take the time to read this file to determine if there are any changes
that may impact your installation.

Getting Started and Creating Applications 3

Evaluation Kits and Production Kits

Keil Software provides two types of kits in which our tools are delivered.

The EK51 Evaluation Kit includes evaluation versions of our 8051 tools along
with this user’s guide. The tools in the evaluation kit let you generate
applications up to 2 Kbytes in size. You may use this kit to evaluate the
effectiveness of our 8051 tools and to generate small target applications.

The 8051 Production Kits (discussed in “Product Overview” on page 8) include
the unlimited versions of our 8051 tools along with this user’s guide and the full
manual set. The production kits also include 1 year of free technical support and
product updates. Updates are available on world wide web www.keil.com under
the update section.

Types of Users

This manual addresses three types of users: evaluation users, new users, and
experienced users.

Evaluation Users are those users who have not yet purchased the software but
have requested the evaluation package to get a better feel for what the tools do
and how they perform. The evaluation package includes evaluation tools that are
limited to 2 Kbytes along with several sample programs that provide real-world
applications created for the 8051 microcontroller family. Even if you are only an
evaluation user, take the time to read this manual. It explains how to install the
software, provides you with an overview of the development tools, and
introduces the sample programs.

New Users are those users who are purchasing 8051 development tools for the
first time. The included software provides you with the latest development tool
technology, manuals, and sample programs. If you are new to the 8051 or the
tools, take the time to review the sample programs described in this manual.
They provide a quick tutorial and help new or inexperienced users quickly get
started.

Experienced Users are those users who have previously used the Keil 8051
development tools and are now upgrading to the latest version. The software
included with a product upgrade contains the latest development tools and
sample programs.

Chapter 1. Introduction

Requesting Assistance

At Keil Software, we are dedicated to providing you with the best embedded
development tools and documentation available. If you have suggestions or
comments regarding any of the printed manuals accompanying this product,
please contact us. If you think you have discovered a problem with the software,
do the following before calling technical support.

1. Read the sections in this manual that pertains to the job or task you are trying
to accomplish.

2. Make sure you are using the most current version of the software and utilities.
Check out the update section on www.keil.com to make sure that you have the
latest software version.

3. Isolate the problem to determine if it is a problem with the assembler,
compiler, linker, library manager, or another development tool.

4. Further isolate software problems by reducing your code to a few lines.

If, after following these steps, you are still experiencing problems, report them to
our technical support group. Please include your product serial number and
version number. We prefer that you send the problem via email. If you contact
us by fax, be sure to include your name and telephone numbers (voice and fax)
where we can reach you.

Try to be as detailed as possible when describing the problem you are having.
The more descriptive your example, the faster we can find a solution. If you
have a one-page code example demonstrating the problem, please email it to us.
If possible, make sure that your problem can be duplicated with the pVision2
simulator. Please try to avoid sending complete applications or long listings as
this slows down our response to you.

NOTE
You can always get technical support, product updates, application notes, and
sample programs from our world wide web site www .keil.com.

Getting Started and Creating Applications 5

Software Development Cycle

When you use the Keil Software tools, the project development cycle is roughly
the same as it is for any other software

development project. uVision2 IDE with Editor & Make
1. Create a project to select the 8051 ! !
device and the tool settings. - e
2. Create source files in C or ANSI C Compiler | Macro Assembler |
assembly. |_‘ r,
3. Build your application with the
: ANSI C LIB51 RTX51
proj ect manager. Standard Library geal-‘l’ti_me
Library M perating
4. Correct errors in source files. S— Sl | YT
. .. | i A J
5. Test linked application. | B T e —— I
The development cycle described + *
above may be best illustrated by a — Emulator &
block diagram of the complete 8051 HVision2 Debugger I PROM Programmer

tool set. Y ¥

high-speed Advanced GDI
Monitor-51 interface for

pVi S i on 2 I D E CPSlJi::‘:I:::il;iral Target Debugger Emulators &

Target Debuggers
The uVision2 IDE combines project
management, a rich-featured editor
with interactive error correction, option setup, make facility, and on-line help.

You use puVision2 to create your source files and organize them into a project
that defines your target application. uVision2 automatically compiles,
assembles, and links your embedded application and provides a single focal
point for you development efforts.

8051 Compiler & Assembler

Source files are created by the pVision2 IDE and are passed to the C51 compiler
or AS1 assembler. The compiler and assembler process source files and creates
relocatable object files. The Keil C51 compiler is a full ANSI implementation of
the C programming language. All standard features of the C language are
supported. In addition, numerous features for direct support of the 8051
environment have been added. The Keil A51 macro assembler supports the
complete instruction sets of the 8051 and all derivatives.

Chapter 1. Introduction

LIB51 Library Manager

Object files created by the compiler and assembler may be used by the LIB51
library manager to create object libraries which are specially formatted, ordered
program collections of object modules that the linker may process at a later time.
When the linker processes a library, only those object modules in the library that
are necessary to create the program are used.

BL51 Linker/Locator

Object files and library files are processed by the linker into an absolute object
module. An absolute object file or module contains no relocatable code. All the
code in an absolute object file resides at fixed memory locations. The absolute
object file may be used to program EPROM or other memory devices. The
absolute object module may also be used with the pVision2 Debugger or with an
in-circuit emulator for the program test.

MVision2 Debugger

The puVision2 symbolic, source-level debugger is ideally suited for fast, reliable
program debugging. The debugger contains a high-speed simulator that let you
simulate an entire 8051 system including on-chip peripherals and external
hardware. Via the integrated device database you can configure the pVision2
debugger to the attributes and peripherals of 8051 device you are using.

For testing the software in a real hardware, you may connect the uVision2
Debugger with Monitor-51 or you can use the Advanced GDI interface to attach
the debugger front-end to a target system.

Monitor-51

The pVision2 Debugger supports target debugging using Monitor-51. The
monitor program is a program that resides in the memory of your target hardware
and communicates with pVision2 using the serial port of the 8051 and a COM
port of your PC. With Monitor-51, pVision2 lets you perform source-level,
symbolic debugging on your target hardware.

Getting Started and Creating Applications 7

RTX51 Real-Time Operating System

The RTXS51 real-time operating system is a multitasking kernel for the 8051
family. The RTXS5]1 real-time kernel simplifies the system design, programming,

and debugging of complex applications where fast reaction to time critical events
is essential. The kernel is fully integrated into the C51 compiler and is easy to
use. Task description tables and operating system consistency are automatically
controlled by the BL51 linker/locator.

Product Overview

Keil Software provides the premier development tools for the 8051 family of
microcontrollers. We bundle our software development tools into different
packages or tool kits. The “Comparison Chart” on page 9 shows the full extent
of the Keil Software 8051 development tools. Each kit and its contents are
described below.

PK51 Professional Developer’s Kit

The PK51 Professional Developer’s Kit includes everything the professional
developer needs to create and debug sophisticated embedded applications for the
8051 family of microcontrollers. The professional developer’s kit can be
configured for all 8051 derivatives.

DK51 Developer’s Kit

The DK51 Developer’s Kit is a reduced version of PK51 and does not include
the RTX51 Tiny real-time operating system. The developer’s kit can be
configured for all 8051 derivatives.

CA51 Compiler Kit

The CA51 Compiler Kit is the best choice for developers who need a C compiler
but not a debugging system. The CAS51 package contains only the uVision IDE.
The uVision2 Debugger features are not available in CAS51. The kit includes
everything you need to create embedded applications and can be configured for
all 8051 derivatives.

Chapter 1. Introduction

A51 Assembler Kit

The A51 Assembler Kit includes an assembler and all the utilities you need to
create embedded applications. It can be configured for all 8051 derivatives.

RTX51 Real-Time Operating System (FR51)

The RTXS51 Real-Time Operating Systems is a real-time kernel for the 8051
family of microcontrollers. RTX51 Full provides a superset of the features

found in RTX51 Tiny and includes CAN communication protocol interface
routines.

Comparison Chart

The following table provides a check list of the features found in each package.
Tools are listed along the top and part numbers for specific kits are listed along
the side. Use this cross reference to select the kit that best suits your needs.

Compontents PK51 ‘ DK51T‘ CA51 A51 ‘ FR51 ‘

MVision2 Project Management & Editor

A51 Assembler

C51 Compiler

BL51 Linker/Locator

LIB51 Library Manager

MVision2 Debugger/Simulator

RTX51 Tiny

RTX51 Full

Getting Started and Creating Applications 9

Chapter 2. Installation

This chapter explains how to setup an operating environment and how to install
the software on your hard disk. Before starting the installation program, you
must do the following:

m Verify that your computer system meets the minimum requirements. E
m Make a copy of the installation diskette for backup purposes.

System Requirements

There are minimum hardware and software requirements that must be satisfied to
ensure that the compiler and utilities function properly.

For our Windows-based tools, you must have the following:

m PC with Pentium, Pentium-II or compatible processor,
m Windows 95, Windows-98, Windows NT 4.0, or higher
m 16 MB RAM minimum,

m 20 MB free disk space.

Installation Details

All of our products come with an installation program that allows easy
installation of our software. To install the 8051 development tools:

m Insert the Keil Development Tools CD-ROM.

m Select Install Software from the Keil CD Viewer menu and follow the
instructions displayed by the setup program.

NOTE

Your PC should automatically launch the CD Viewer when you insert the CD. If
not, run the program KEIL\SSETUP\SETUP.EXE from the CD to install the
software.

10

Chapter 2. Installation

Folder Structure

The setup program copies the development tools into sub-folders of the base
folder. The default base folder is: c:\keIrL. The following table lists the
structure of a complete installation that includes the entire line of 8051
development tools. Your installation may vary depending on the products you
purchased.

Folder Description

C:\KEIL\C51\ASM Assembler SFR definition files and template source file.
C:\KEIL\C51\BIN Executable files of the 8051 toolchain.
C:\KEIL\C51\EXAMPLES Sample applications.

C:\KEIL\C51\RTX51 RTX51 Full files.

C:\KEIL\CS51\RTX TINY RTX51 Tiny files.

C:\KEIL\C51\INC C compiler include files.

C:\KEIL\C51\LIB C compiler library files, startup code, and source of I/O routines.
C:\KEIL\C51\MONITOR Target Monitor files and Monitor configuration for user hardware.
C:\KEIL\UV2 Generic pVision2 files.

Within this users guide we refer to the default folder structure. If you have installed your software
on a different folder, you have to adjust the pathnames to match with your installation.

Getting Started and Creating Applications 11

Chapter 3. Development Tools

This chapter discusses the features and advantages of the 8051 development
tools available from Keil Software. We have designed our tools to help you
quickly and successfully complete your job. They are easy to use and are
guaranteed to help you achieve your design goals.

MVision2 Integrated Development Environment

uVision2 is a standard Windows application. uVision2 is an integrated software
development platform that combines a robust editor, project manager, and make 3
facility. uVision2 supports all of the Keil tools for the 8051 including the C

compiler, macro assembler, linker/locator, and object-HEX converter. puVision2

helps expedite the development process of your embedded applications by

providing the following:

m Full-featured source code editor,

m Device Database for pre-configuring the development tool setting,

m Project manager for creating and maintaining your projects,

m Integrated make facility for assembling, compiling, and linking your
embedded applications,

m Dialogs for all development tool settings,

m True integrated source-level Debugger with high-speed CPU and peripheral
simulator.

m Advanced GDI interface for software debugging in the target hardware and
for connection to Monitor-51.

m Links to development tools manuals, device datasheets & user’s guides.

NOTE
The uVision2 debugging features are only available in the PK51 and DK51 tool
kits.

12

Chapter 3. Development Tools

About the Environment

The pVision2 screen provides you with a menu bar for command entry, a tool
bar where you can rapidly select command buttons, and windows for source
files, dialog boxes, and information displays. pVision2 lets you simultaneously
open and view multiple source files.

i Measure - pVision2

|| i Edit View Eroject Debug window Help

[ELx]

|eed@|sme =4 % % A\QTHTM@!‘ S EHOBMPG U :almv s oE »
T T]| .G <1\ C1 66\ EXAMPLE S MEASURE Measure.c nbly Work-
Project Fosizn el break; -15 000209DC 06F00B00 ADB 2 g o
) == 14 000209E0 CBOO space
Window 0x9000 e }
04000 case 'D': -13 000203F6 08D1 ADD
00002 printf ("\nDisplay current Measurement -12 D00203F8 F04D MOV
it do { -11 D0D203FA 4984 CMPB
004 while (1 SORTR) (= unizuan: 3DDE JMPR CC_KZ,002036C
gl das mdisplay = 1; -9 D00203FE ECED R13
5 00000 while (mdisplay); -8 00020400 CBOO P
" <000 measure_displ. t) - 0002032E D6F01000 A RO, #0x0010
i} 00055) L
It} 072 . =
o Dxfes } while (X B
il 00000 printf (Mn\n"; B! 0=FDOD. 1
W2 ot break; -mue [lnilsplay)]
B Tigoud 0=FD00. 1.0=020;
! > 1le [lnhsplayl
Peripheral 4 noon case 'g': -3 BADOFE 1D 0xFDO0. 1, 0x020:
: - 1] printf (M\nstart Measurement Recording 5 wlnle umsplay) tch/
Dialog byt startflag = 1: 12 BAOOFELD JB 0=FDOD. 1, 02020 Watci
Bosys : ’ 4 while (mdisplay):
o 0de20 L JB 0xF]] gta” "
o Oded) T ac
dppll 00000 N imer Counter ¢ B . 0402020312
dppl Dx0007 ~Timer/Counter]—— | hsurement Recording\ (current);
dppZ - 00010 020312 2007 SUB
dppd 0x0003
PCE 000020312
states 3551311 = Serial il
sec 03861311 T Quit | quit measuremont rogbrding
@ fiags | Start | start measurement fecording
i
T1: [0:0375 I TiR
Command: 4 Memory
TOICAN: [Bx4300 "
Display current Measurements: (ESC to Abort) Window
Output TIREL: [(>FF00 Time: 12:04:35.456 P2:A444 AND:1.46)/AN1:2.44V AN2:3.91V AN3:1. =
Window Einie Nesr [Tz q v
e :\MERSUER, C (129) : currera) 3 Name Yalue 2 asiese [seve recoa / El
" . [e £ i -
::\\32223??«(133)' } ‘curgzitoéoii 0002100A: FF 00 00 00 00 00 00 00
N e - B Dyp" 100041013: 00 00 00 09f 00 00 00 FF 00
©:\MERSURE .C current.ar i DALA0IC] "D loo0a101¢: 00 00 0 00 00 00 00 00
e :\MEASURE.C printf o 100041025: 00 00 0 00 FF 00 00 00
e 1 \MEASURE . C (2537 meas 0004102E: 00 00 00 00 00 00 00 00 00
e :\MCOMMAND.C (32} : extern struct mr ggg:igjz zz gz gz = g‘; gg gg gz ;3
e 1 \MCOMMAND.C (77) : cuerent. time_ I55dii0is, 06 57 56 66 '35 t5.55 B 66
W T Build f Dommand) Find in Files /4[| » AT TP Lacals fisich #0 | Walch 2 f, Call Stack I

Menu Commands, Toolbars and Shortcuts

The menu bar provides you with menus for editor operations, project
maintenance, development tool option settings, program debugging, window
selection and manipulation, and on-line help. With the toolbar buttons you can
rapidly execute operations. The commands can be reached also with
configurable keyboard shortcuts. The following tables give you an overview of
the pVision2 commands and the default shortcuts.

Getting Started and Creating Applications 13

File Menu and File Commands

Toolbar File Menu Shortcut Description ‘

B New Ctrl+N Create a new source or text file
= Open Ctrl+O Open an existing file
Close Close the active file
= Save Ctrl+S Create a new source or text file
=i} Save all open source and text files
Save as... Save and rename the active file
Device Database Maintain the pVision2 device database
Print Setup... Setup the printer
=] Print Ctrl+P Print the active file
Print Preview Display pages in print view
1..9 Open the most recent used source or text files
Exit Quit pVision2 and prompt for saving files

Edit Menu and Editor Commands

Toolbar Edit Menu Description
Home Move cursor to beginning of line
End Move cursor to end of line
Ctrl+Home Move cursor to beginning of file
Ctrl+End Move cursor to end of file
Ctrl+ Move cursor one word left
Ctrl+ Move cursor one word rigth
Ctrl+A Select all text in the current file
) Undo Ctrl+Z Undo last operation
) Redo Ctrl+Shift+Z Redo last undo command
5 Cut Ctrl+X Cut selected text to clipboard
Ctrl+Y Cut text in the current line to clipboard
Copy Ctrl+C Copy selected text to clipboard
Paste Ctrl+V Paste text from clipboard
Indent Selected Text Indent selected text right one tab stop
Unindent Selected Text Indent selected text left one tab stop
Toggle Bookmark Ctrl+F2 Toggle bookmark at current line
Goto Next Bookmark F2 Move cursor to next bookmark
Goto Previous Shift+F2 Move cursor to previous bookmark
Bookmark
Clear All Bookmarks Clear all bookmarks in active file
Find Ctrl+F Search text in the active file
F3 Repeat search text forward

14

Chapter 3. Development Tools

Toolbar Edit Menu Shortcut Description

Shift+tF3 Repeat search text backward
Ctrl+F3 Search word under cursor

Ctrl+] Find matching brace, parenthesis, or bracket (to use
this command place cursor before a brace,
parenthesis or bracket)

Replace
Cly Find in Files...

Ctrl+H Replace specific text
Search text in several files

Select Text Commands

In uwVision2 you can select text by holding down Shift and pressing the key that
moves the cursor. For example, Ctrl+ moves the cursor to the next word, and
Ctrl+Shift+ selects the text from the current cursor position to the beginning
of the next word. With the mouse you can select text as follows:

Select Text With the Mouse

Any amount of text
A word
A line of text

Drag over the text
Double-click the word

Move the pointer to the left of the line until it changes to a right-pointing
arrow, and then click

Multiple lines of text Move the pointer to the left of the lines until it changes to a right-pointing

arrow, and then drag up or down

A vertical block of text Hold down the ALT key, and then drag

View Menu

Toolbar View Menu Shortcut Description

Status Bar Show or hide the status bar
File Toolbar Show or hide the File toolbar
Build Toolbar Show or hide the Build toolbar
Debug Toolbar Show or hide the Debug toolbar

Project Window
Output Window

Show or hide the Project window
Show or hide the Output window

Source Browser Open the Source Browser window

Disassembly Window

2!
[l
(=
=
B Watch & Call Stack Window
W
E

Show or hide the Disassembly window
Show or hide the Watch & Call Stack window
Memory Window Show or hide the Memory window

Code Coverage Window Show or hide the Code Coverage window

Performance Analyzer Window Show or hide the Performance Analyzer window
Symbol Window

Serial Window #1

Show or hide the Symbol window

'y

Show or hide the Serial window #1

Getting Started and Creating Applications

Toolbar View Menu Shortcut

Description

Serial Window #2
Toolbox

Periodic Window Update
Workbook Mode
Options...

Show or hide the Serial window #2

Show or hide the Toolbox

Updates debug windows while running the program
Show workbook frame with windows tabs

Change Colors, Fonts, Shortcuts and Editor options

Project Menu and Project Commands

Toolbar Project Menu

New Project ...

Import pVision1 Project ...
Open Project ...

Close Project...

Target Environment
Targets, Groups, Files
Select Device for Target

Remove...
Options... Alt+F7
File Extensions
Build Target 77/
Rebuild Target
2 Translate... Ctrl+F7
Stop Build
1.9

Shortcut Description ‘

Create a new project

Convert a pVision1 Project File (see page 70)
Open an existing project

Close current project

Define paths for tool chain, include & library files
Maintain Targets, File Groups and Files of a project
Select a CPU from the Device Database
Remove a Group or File from the project
Change tool options for Target, Group or File
Change options for current Target

Select current Target

Select file extensions for different file types
Translate modified files and build application
Re-translate all source files and build application
Translate current file

Stop current build process

Open the most recent used project files

Debug Menu and Debug Commands

Toolbar Debug Menu

@) Start/Stop Debugging ~ Ctrl+F5

Go F5

I Step F11

w Step over F10

P Step out of current Ctrl+F11
function

[] Stop Running ESC
Breakpoints...

<y Insert/Remove Breakpoint

B Enable/Disable Breakpoint

Shortcut Description ‘

Start or stop pVision2 Debug Mode

Run (execute) until the next active breakpoint
Execute a single-step into a function

Execute a single-step over a function
Execute a step out of the current function

Stop program execution
Open Breakpoint dialog
Toggle breakpoint on current line

Enable/disable breakpoint on the current line

16 Chapter 3. Development Tools

Toolbar Debug Menu Shortcut Description ‘

Disable All Breakpoints Disable all breakpoints in the program

] Kill All Breakpoints Kill all breakpoints in the program

o Show Next Statement Show next executeable statement/instruction

ma Enable/Disable Trace Enable trace recording for instruction review
Recording

= View Trace Records Review previous executed instructions
Memory Map... Open memory map dialog
Performance Analyzer... Open setup dialog for the Performance Analyzer
Inline Assembly... Stop current build process
Function Editor... Edit debug functions and debug INI file

Peripherals Menu

Toolbar Peripherals Shortcut Description
Menu
o Reset CPU Set CPU to reset state
[Interrupt ... Watchdog] Open dialogs for on-chip peripherals, these dialogs
depend on the CPU selected from the device
database
Tools Menu

The tools menu allows you to configure and run Gimpel PC-Lint, Siemens Easy-
Case, and custom programs. With Customize Tools Menu... user programs are
added to the menu. For more information refer to “Using the Tools Menu” on

page 61.
Toolbar Tools Menu Shortcut Description ‘

Setup PC-Lint... Configure PC-Lint from Gimpel Software
Lint Run PC-Lint current editor file
Lint all C Source Files Run PC-Lint across the C source files of your project
Setup Easy-Case... Configure Siemens Easy-Case
Start/Stop Easy-Case Start or stop Siemens Easy-Case
Show File (Line) Open Easy-Case with the current editor file
Customize Tools Menu... Add user programs to the Tools Menu

Getting Started and Creating Applications 17

SVCS Menu

With the SVCS menu you configure and add the commands of a Software
Version Control System (SVCS). For more information refer to “Using the
SVCS Menu” on page 64..

Toolbar SVCS Menu Shortcut Description

Configure Version Control... Configure the commands of your SVCS

Window Menu

Toolbar Window Menu Shortcut Description ‘

Cascade Arrange Windows so they overlap
Tile Horizontally Arrange Windows so they no overlap
Tile Vertically Arrange Windows so they no overlap
Arrange Icons Arrange Icons at the bottom of the window
Split Split the active window into panes
1..9 Activate the selected window
Help Menu
Toolbar Help Menu Shortcut Description
Help topics Open on-line help
About pVision Display version numbers and license information

uVision2 has two operating modes:

= Build Mode: allows you to translate all the application files and to generate
executable programs. The features of the Build Mode are described in
”Chapter 4. Creating Applications” on page 47.

m Debug Mode: provides you with a powerful debugger for testing your
application. The Debug Mode is described in “Chapter 5. Testing Programs”
on page 81.

In both operating modes you can use the source editor of pVision2 to modify
your source code.

18

Chapter 3. Development Tools

C51 Optimizing C Cross Compiler

For 8051 microcontroller applications, the Keil C51 Cross Compiler offers a
way to program in C which truly matches assembly programming in terms of
code efficiency and speed. The Keil C51 is not a universal C compiler adapted
for the 8051. It is a dedicated C compiler that generates extremely fast and
compact code. The Keil C51 Compiler implements the ANSI standard for the C

language.

Use of a high-level language such as C has many advantages over assembly
language programming;:

m Knowledge of the processor instruction set is not required, rudimentary
knowledge of the memory structure of the 8051 CPU is desirable (but not
necessary).

m Details like register allocation and addressing of the various memory types
and data types is managed by the compiler.

m Programs get a formal structure and can be divided into separate functions.
This leads to better program structure.

m The ability to combine variable selection with specific operations improves
program readability.

m Keywords and operational functions can be used that more nearly resemble
the human thought process.

m Programming and program test time is drastically reduced which increases
your efficiency.

m The C run-time library contains many standard routines such as: formatted
output, numeric conversions and floating point arithmetic.

m Existing program parts can be more easily included into new programs,
because of the comfortable modular program construction techniques.

m The language C is a very portable language (based on the ANSI standard) that
enjoys wide popular support, and can be easily obtained for most systems.
This means that existing program investments can be quickly adapted to other
processors as needed.

Getting Started and Creating Applications 19

C51 Language Extensions

The C51 compiler is an ANSI compliant C compiler and includes all aspects of
the C programming language that are specified by the ANSI standard. A number
of extensions to the C programming language are provided to support the
facilities of the 8051 microprocessor. The C51 compiler includes extensions for:

Data Types,

Memory Types,

Memory Models,

Pointers,

Reentrant Functions,

Interrupt Functions,

Real-Time Operating Systems,
Interfacing to PL/M and A51 source files.

The following sections briefly describe these extensions.

Data Types

The C51 compiler supports the data types listed in the following table. In
addition to these scalar types, variables can be combined into structures, unions,
and arrays. Except as noted, you may use pointers to access these data types.

Data Type Bits Bytes Value Range ‘
bit 1 1 O0to1

signed char 1 -128 to +127

unsigned char 1 0 to 255

enum 16 2 -32768 to +32767

signed short 16 2 -32768 to +32767

unsigned short 16 2 0 to 65535

signed int 16 2 -32768 to +32767

unsigned int 16 2 0 to 65535

signed long 32 4 -2147483648 to 2147483647
unsigned long 32 4 0 to 4294967295

float 32 4 +1.175494E-38 to +3.402823E+38
sbit t 1 Oto1

sfr T 8 1 0 to 255

sfr16 1 16 2 0 to 65535

T The bit, sbit, sfr, and sfr16 data types are specific to the 8051 hardware and the C51 and C251
compilers. The are not a part of ANSI C and cannot be accessed through pointers.

20

Chapter 3. Development Tools

The sbit, sfr, and sfr16 data types are included to allow access to the special
function registers that are available on the 8051. For example, the declaration:
sfr PO = 0x80; declares the variable po and assigns it the special function
register address of 0x80. This is the address of PORT 0 on the 8051.

The C51 compiler automatically converts between data types when the result
implies a different data type. For example, a bit variable used in an integer
assignment is converted to an integer. You can, of course, coerce a conversion
by using a type cast. In addition to data type conversions, sign extensions are
automatically carried out for signed variables.

Memory Types

The C51 compiler supports the architecture of the 8051 and its derivatives and
provides access to all memory areas of the 8051. Each variable may be
explicitly assigned to a specific memory space.

Memory Type Description ‘

code Program memory (64 Kbytes); accessed by opcode MOVC @A+DPTR.

data Directly addressable internal data memory; fastest access (128 bytes).

idata Indirectly addressable internal data memory; accessed across the full internal
address space (256 bytes).

bdata Bit-addressable internal data memory; mixed bit and byte access (16 bytes).

xdata External data memory (64 Kbytes); accessed by opcode MOVX @DPTR.

pdata Paged (256 bytes) external data memory; accessed by opcode MOVX @Rn.

Accessing the internal data memory is considerably faster than accessing the
external data memory. For this reason, you should place frequently used
variables in internal data memory and less frequently used variables in external
data memory.

By including a memory type specifier in the variable declaration, you can specify
where variables are stored.

As with the signed and unsigned attributes, you may include memory type
specifiers in the variable declaration. For example:

char data varl;

char code text[] = "ENTER PARAMETER:";
unsigned long xdata array[100];

float idata x,y,z;

unsigned int pdata dimension;
unsigned char xdata vector[10] [4] [4];
char bdata flags;

Getting Started and Creating Applications 21

If the memory type specifier is omitted in a variable declaration, the default or
implicit memory type is automatically selected. Function arguments and
automatic variables which cannot be located in registers are also stored in the
default memory area.

The default memory type is determined by the SMALL, COMPACT and
LARGE compiler control directives. These directives specify the memory
model to use for the compilation.

Memory Models
The memory model determines the default memory type used for function 3

arguments, automatic variables, and variables declared with no explicit memory
type. You specify the memory model on the command line using the SMALL,
COMPACT, and LARGE control directives. By explicitly declaring a variable
with a memory type specifier, you may override the default memory type.

SMALL All variables default to the internal data memory of the 8051.
This is the same as if they were declared explicitly using the
data memory type specifier. In this memory model, variable
access is very efficient. However, all data objects, as well as the
stack must fit into the internal RAM. Stack size is critical
because the stack space used depends upon the nesting depth of
the various functions. Typically, if the BL51 code banking
linker/locator is configured to overlay variables in the internal
data memory, the small model is the best model to use.

COMPACT All variables default to one page of external data memory. This
is the same as if they were explicitly declared using the pdata
memory type specifier. This memory model can accommodate a
maximum of 256 bytes of variables. The limitation is due to the
addressing scheme used, which is indirect through registers RO
and R1. This memory model is not as efficient as the small
model, therefore, variable access is not as fast. However, the
compact model is faster than the large model. The high byte of
the address is usually set up via port 2. The compiler does not
set this port for you.

LARGE In large model, all variables default to external data memory.
This is the same as if they were explicitly declared using the
xdata memory type specifier. The data pointer (DPTR) is used
for addressing. Memory access through this data pointer is

22

Chapter 3. Development Tools

inefficient, especially for variables with a length of two or more

bytes. This type of data access generates more code than the
small or compact models.

NOTE

You should always use the SMALL memory model. It generates the fastest,
tightest, and most efficient code. You can always explicitly specify the memory
area for variables. Move up in model size only if you are unable to make your
application fit or operate using SMALL model.

Getting Started and Creating Applications 23

Pointers

The C51 compiler supports pointer declarations using the asterisk character
(‘**). You may use pointers to perform all operations available in standard C.
However, because of the unique architecture of the 8051 and its derivatives, the
C51 compiler supports two different types of pointers: memory specific pointers
and generic pointers.

Generic Pointers

Generic pointers are declared in the same way as standard C pointers. For

example:

char *s; /* string ptr */
int *numptr; /* int ptr */
long *state; /* long ptr */

Generic pointers are always stored using three bytes. The first byte is for the
memory type, the second is for the high-order byte of the offset, and the third is
for the low-order byte of the offset.

Generic pointers may be used to access any variable regardless of its location in
8051 memory space. Many of the library routines use these pointer types for this
reason. By using these generic untyped pointers, a function can access data
regardless of the memory in which it is stored.

Memory Specific Pointers

Memory specific pointers always include a memory type specification in the
pointer declaration and always refer to a specific memory area. For example:

char data *str; /* ptr to string in data */
int xdata *numtab; /* ptr to int(s) in xdata */
long code *powtab; /* ptr to long(s) in code */

Because the memory type is specified at compile-time, the memory type byte
required by untyped pointers is not needed by typed pointers. Typed pointers
can be stored using only one byte (idata, data, bdata, and pdata pointers) or
two bytes (code and xdata pointers).

Comparison: Memory Specific & Generic Pointers

You can significantly accelerate an 8051 C program by using ‘memory specific’
pointers. The following sample program shows the differences in code & data
size and execution time for various pointer declarations.

24

Chapter 3. Development Tools

Description Idata Pointer Xdata Pointer Generic Pointer
Sample Program char idata *ip; char xdata *xp; char *p;
char val; char val; char val;
val = *ip; val = *xp; val = *p;
8051 Program Code MOV RO,ip MOV DPL,xp +1 MOV R1,p + 2
Generated MOV wval,@RO MOV DPH, Xp MOV R2,p + 1
MOV A, @DPTR MOV R3,p
MOV val,A CALL CLDPTR
Pointer Size 1 byte data 2 bytes data 3 bytes data
Code Size 4 bytes code 9 bytes code 11 bytes code + Lib.
Execution Time 4 cycles 7 cycles 13 cycles

Reentrant Functions

A reentrant function can be shared by several processes at the same time. When
a reentrant function is executing, another process can interrupt the execution and
then begin to execute that same reentrant function. Normally, C51 functions
cannot be called recursively or in a fashion which causes reentrancy. The reason
for this limitation is that function arguments and local variables are stored in
fixed memory locations. The reentrant function attribute allows you to declare
functions that may be reentrant and, therefore, may be called recursively. For
example:

int calc (char i, int b) reentrant

{

int x;

x = table [i];
return (x * b);

}

Reentrant functions can be called recursively and can be called simultaneously
by two or more processes. Reentrant functions are often required in real-time
applications or in situations where interrupt code and non-interrupt code must
share a function.

For each reentrant function, a reentrant stack area is simulated in internal or
external memory depending on the memory model.

NOTE

By selecting the reentrant attribute on a function by function basis, you can
select the use of this attribute where it’s needed without making the entire
program reentrant. Making an entire program reentrant may cause it to be
larger and consume more memory.

Getting Started and Creating Applications

25

Interrupt Functions

The C51 compiler provides you with a method of calling a C function when an
interrupt occurs. This support allows you to create interrupt service routines in
C. You need only be concerned with the interrupt number and register bank
selection. The compiler automatically generates the interrupt vector and entry
and exit code for the interrupt routine. The interrupt function attribute, when
included in a declaration, specifies that the associated function is an interrupt
function. Additionally, you can specify the register bank used for that interrupt
with the using function attribute.

unsigned int interruptecnt;
unsigned char second;

void timer0 (void) interrupt 1 using 2 {

if (++interruptcnt == 4000) { /* count to 4000 */
second++; /* second counter */
interruptent = 0; /* clear int counter */
}

}

Parameter Passing

The C51 compiler passes up to three function arguments in CPU registers. This
significantly improves system performance since arguments do not have to be
written to and read from memory. Argument passing can be controlled with the
REGPARMS and NOREGPARMS control directives. The following table
lists the registers used for different arguments and data types.

Argument char, int, generic
Number 1-byte pointer 2-byte pointer pointer
R7 R6 & R7 R4 — R7 R1—R3

2 R5 R4 & R5

8 R3 R2 & R3

If no registers are available for argument passing or too many arguments are
involved, fixed memory locations are used for those extra arguments.

Function Return Values

CPU registers are always used for function return values. The following table
lists the return types and the registers used for each.

26

Chapter 3. Development Tools
Return Type Register Description ‘
bit Carry Flag
char, unsigned char, 1-byte pointer R7
int, unsigned int, 2-byte pointer R6 & R7 MSB in R6, LSB in R7
long, unsigned long R4 —R7 MSB in R4, LSB in R7
float R4 —R7 32-Bit IEEE format
generic pointer R1—R3 I\R/I;-Jmory type in R3, MSB R2, LSB

Register Optimizing

Depending on program context, the C51 compiler allocates up to 7 CPU registers
for register variables. Any registers modified during function execution are
noted by the C51 compiler within each module. The linker/locator generates a
global, project-wide register file which contains information of all registers
altered by external functions. Consequently, the C51 compiler knows the
register used by each function in an application and can optimize the CPU
register allocation of each C function.

Real-Time Operating System Support

The C51 compiler integrates well with both the RTX-51 Full and RTX-51 Tiny
multitasking real-time operating systems. The task description tables are
generated and controlled during the link process. For more information about
the RTX real-time operating systems, refer to “Error! Reference source not
found.” on page Error! Bookmark not defined..

Interfacing to Assembly

You can easily access assembly routines from C and vice versa. Function
parameters are passed via CPU registers or, if the NOREGPARMS control is
used, via fixed memory locations. Values returned from functions are always
passed in CPU registers.

You can use the SRC directive to direct the C51 compiler to generate a file
ready to assemble with the A51 assembler instead of an object file. For example,
the following C source file:

unsigned int asmfuncl (unsigned int arg) {
return (1 + arg);

Getting Started and Creating Applications 27

generates the following assembly output file when compiled using the SRC

directive.

?PR?_asmfuncl?ASM1l SEGMENT CODE

PUBLIC _asmfuncl
RSEG ?PR?_asmfuncl?ASM1
USING 0

_asmfuncl:

;j---- Variable 'arg?00' assigned to Register 'R6/R7' ----
MOV A,R7 ; load LSB of the int
ADD A, #01H ; add 1
MOV R7,A ; put it back into R7
CLR A
ADDC A,R6 ; add carry & R6
MOV R6,A

?C0001:

RET ; return result in R6/R7

You may use the #pragma asm and #pragma endasm preprocessor directives
to insert assembly instructions into your C source code.

Interfacing to PL/M-51

Intel’s PL/M-51 is a popular programming language that is similar to C in many
ways. You can easily interface routines written in C to routines written in
PL/M-51. You can access PL/M-51 functions from C by declaring them with the
alien function type specifier. All public variables declared in the PL/M-51
module are available to your C programs. For example:

extern alien char plm func (int, char);

Since the PL/M-51 compiler and the Keil Software tools all generate object files
in the OMF51 format, external symbols are resolved by the linker.

28

Chapter 3. Development Tools

Code Optimizations

The C51 compiler is an aggressive optimizing compiler. This means that the
compiler takes certain steps to ensure that the code generated and output to the
object file is the most efficient (smaller and/or faster) code possible. The
compiler analyzes the generated code to produce the most efficient instruction
sequences. This ensures that your C program runs as quickly and effectively as
possible in the least amount of code space.

The C51 compiler provides six different levels of optimizing. Each increasing
level includes the optimizations of levels below it. The following is a list of all
optimizations currently performed by the C51 compiler.

General Optimizations

m Constant Folding: Several constant values occurring in an expression or
address calculation are combined as a single constant.

s Jump Optimizing: Jumps are inverted or extended to the final target address
when the program efficiency is thereby increased.

m Dead Code Elimination: Code which cannot be reached (dead code) is
removed from the program.

m Register Variables: Automatic variables and function arguments are located
in registers whenever possible. No data memory space is reserved for these
variables.

m Parameter Passing Via Registers: A maximum of three function arguments
can be passed in registers.

= Global Common Subexpression Elimination: Identical subexpressions or
address calculations that occur multiple times in a function are recognized
and calculated only once whenever possible.

s Common Tail Merging: common instruction blocks are merged together
using jump instructions.

m Re-use Common Entry Code: common instruction sequences are moved in
front of a function to reduce code size

= Common Block Subroutines: multiple instruction sequences are packed
into subroutines. Instructions are rearranged to maximize the block size.

Getting Started and Creating Applications 29

8051-Specific Optimizations

m Peephole Optimization: Complex operations are replaced by simplified
operations when memory space or execution time can be saved as a result.

m Access Optimizing: Constants and variables are computed and included
directly in operations.

m Extended Access Optimizing: the DPTR register is used as register variable
for memory specific pointers to improve code density.

m Data Overlaying: Data and bit segments of functions are identified as
OVERLAYABLE and are overlaid with other data and bit segments by the
BL51 code banking linker/locator. 3

m Case/Switch Optimizing: Depending upon their number, sequence, and
location, switch and case statements can be further optimized by using a
jump table or string of jumps.

Options for Code Generation

s OPTIMIZE(SIZE): Common C operations are replaced by subprograms.
Program code size is reduced at the expense of program speed.

s OPTIMIZE(SPEED): Common C operations are expanded in-line.
Program speed is increased at the expense of code size.

m NOAREGS: The C51 compiler no longer uses absolute register access.
Program code is independent of the register bank.

s NOREGPARMS: Parameter passing is always performed in local data
segments rather then dedicated registers. Program code created with this
#pragma is compatible to earlier versions of the C51 compiler, the PL/M-51
compiler, and the ASM-51 assembler.

Debugging

The C51 compiler uses the Intel Object Format (OMF51) for object files and
generates complete symbol information. Additionally, the compiler can include
all the necessary information such as; variable names, function names, line
numbers, and so on to allow detailed and thorough debugging and analysis with
dScope-51 or Intel compatible emulators. All Intel compatible emulators may be
used for program debugging. In addition, the OBJECTEXTEND control
directive embeds additional variable type information in the object file which
allows type-specific display of variables and structures when using certain
emulators. You should check with your emulator vendor to determine if it is

30

Chapter 3. Development Tools

compatible with the Intel OMF51 object module format and if it can accept Keil
object modules.

Library Routines

The C51 compiler includes seven different ANSI compile-time libraries which
are optimized for various functional requirements.

Library File Description ‘
C51S.LIB Small model library without floating-point arithmetic

C51FPS.LIB Small model floating-point arithmetic library

C51C.LIB Compact model library without floating-point arithmetic

C51FPC.LIB Compact model floating-point arithmetic library

C51L.LIB Large model library without floating-point arithmetic

C51FPL.LIB Large model floating-point arithmetic library

80C751.LIB Library for use with the Philips 8xC751 and derivatives.

Source code is provided for library modules that perform hardware-related /0
and is found in the \CS1\LIB directory. You may use these source files to help
you quickly adapt the library to perform I/O using any I/O device in your target.

Intrinsic Library Routines

The libraries included with the compiler include a number of routines that are
implemented as intrinsic functions. Non-intrinsic functions generate ACALL or
LCALL instructions to perform the library routine. Intrinsic functions generate
in-line code (which is faster and more efficient) to perform the library routine.

Intrinsic Function Description

crol Rotate character left.

cror Rotate character right.

irol Rotate integer left.

iror Rotate integer right.

lrol Rotate long integer left.

lror Rotate long integer right.

nop No operation (8051 NOP instruction).

testbit Test and clear bit (8051 JBC instruction).

Getting Started and Creating Applications 31

Program Invocation

Typically, the C51 compiler will be called from the pVision2 IDE when you
build your project. However, you may invoke the compiler also within a DOS
box by typing C51 on the command line. Additionally the name of the C source
file to compile is specified on the invocation line as well as any optional control
parameters to affect the way the compiler functions.

Example

>C51 MODULE.C COMPACT PRINT (E:M.LST) DEBUG SYMBOLS

C51 COMPILER V6.00
C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)

Control directives can also be entered via the #pragma directive, at the
beginning of the C source file. For a list of available C51 directives refer to
“C51/C251 Compiler” on page 179.

Sample Program

The following example shows some functional capabilities of C51. The C51
compiler produces object files in OMF-51 format, in response to the various C
language statements and other directives.

Additionally and optionally, the compiler can emit all the necessary information
such as; variable names, function names, line numbers, and so on to allow
detailed program debugging and analysis with the uVision2 Debugger or
emulators.

The compilation phase also produces a listing file that contains source code,
directive information, an assembly listing, and a symbol table. An example for a
listing file created by the C51 compiler is shown on the next page.

32

Chapter 3. Development Tools

C51 COMPILER V6.00, SAMPLE 07/01/99 08:00:00 PAGE 1

DOS C51 COMPILER V6.00, COMPILATION OF MODULE SAMPLE
OBJECT MODULE PLACED IN SAMPLE.OBJ
COMPILER INVOKED BY: C:\KEIL\C51\BIN\C51.EXE SAMPLE.C CODE

stmt level source
1 #include <reg51.h> /* SFR definitions for 8051 */

2 #include <stdio.h> /* standard i/o definitions */
3 #include <ctype.h> /* defs for char conversion */
4

5 #define EOT O0x1A /* Control+Z signals EOT */

6

7 void main (void) {

8 1 unsigned char c;

9 1
10 1 /* setup serial port hdw (2400 Baud @12 MHz) */
11 1 SCON = 0x52; /* SCON */
12 1 TMOD = 0x20; /* TMOD */
13 1 TCON = 0x69; /* TCON */
14 1 TH1 = OxF3; /* TH1 */
15 1
16 1 while ((c = getchar ()) != EOF) {
17 2 putchar (toupper (c));
18 2
19 1 PO = 0; /* clear Output Port to signal ready */

1

}

ASSEMBLY LISTING OF GENERATED OBJECT CODE

; FUNCTION main (BEGIN)

; SOURCE LINE # 7

; SOURCE LINE # 11
0000 759852 MOV SCON, #052H

; SOURCE LINE # 12
0003 758920 MOV TMOD, #020H

; SOURCE LINE # 13
0006 758869 MOV TCON, #069H

; SOURCE LINE # 14
0009 758DF3 MOV TH1, #0F3H
0ooc ?C0001:

; SOURCE LINE # 16
000C 120000 E LCALL getchar
000F 8FO00 R MOV c,R7
0011 EF MOV A,R7
0012 F4 CPL A
0013 6008 Jz ?C0002

; SOURCE LINE # 17
0015 120000 E LCALL _toupper
0018 120000 E LCALL _putchar

; SOURCE LINE # 18
001B 80EF SJMP ?C0001
001D ?C0002:

; SOURCE LINE # 19
001D E4 CLR A
001E F580 MOV PO,A

; SOURCE LINE # 20
0020 22 RET

; FUNCTION main (END)

MODULE INFORMATION: STATIC OVERLAYABLE
CODE SIZE = 33 scoo
CONSTANT SIZE = —=o=
XDATA SIZE =
PDATA SIZE =
DATA SIZE = - 1
IDATA SIZE = - scoo
BIT SIZE = - scoo

END OF MODULE INFORMATION.

C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)

C51 produces a
listing file with line
numbers as well as
the time and date of
the compilation.

Information about
compiler invocation
and the object file
generated is printed.

The listing contains a
line number before
each source line and
the instruction
nesting { } level.

If errors or possible
sources of errors
exist an error or
warning message is
displayed.

Enable under
uVision2 Options for
Target - Listing -
Assembly Code the
C51 CODE directive.
This gives you an
assembly listing file
with embedded
source line numbers.

Getting Started and Creating Applications 33

A51 Macro Assembler

AS51 is a macro assembler for the 8051 microcontroller family. A51 translates
symbolic assembler language mnemonics into executable machine code. AS1
allows you to define each instruction in a 8051 program and is used where
utmost speed, small code size and exact hardware control is essential. The A51
macro facility saves development and maintenance time, since common
sequences need only be developed once.

Source-Level Debugging
AS51 generates complete symbol and type information; this allows an exact 3

display of program variables. Even line numbers of the source file are available
to enable source level debugging for assembler programs with the uVision2
Debugger or emulators.

Functional Overview

AS51 translates an assembler source file into a relocatable object module. A51
generates a listing file, optionally with symbol table and cross reference. A51
contains two macro processors:

m Standard Macros are simple to use and enable you to define and to use
macros in your 8051 assembly programs. The standard macros are used in
many assemblers.

m The Macro Processing Language (MPL) is a string replacement facility. It
is fully compatible with Intel ASMS51 and has several predefined macro
processor functions. These MPL processor functions perform many useful
operations, like string manipulation or number processing.

Another powerful feature of A51 macro assembler is conditional assembly
depending on command line directives or assembler symbols. Conditional
assembly of sections of code can help you to achieve the most compact code
possible or to generate different applications out of one assembly source file.

Listing File

On the following page is an example listing file generated by the assembler.

34

Chapter 3. Development Tools

A51 MACRO ASSEMBLER Test Program

DOS MACRO ASSEMBLER A51 V6.00
OBJECT MODULE PLACED IN SAMPLE.OBJ
ASSEMBLER INVOKED BY: C:\KEIL\C51\BIN\A51.EXE SAMPLE.A51 XREF

LOC OBJ LI

0000 020000 F

0000 120000 F

0003 C200
0005 900000
0008 120000
000B 120000
000E 80F5

Lo B]

0000 54455354
0004 2050524F
0008 4752414D
000C 00

0000

NAME

BITVAR
CONST.
INITSERIAL . . .
PROG
PUTSTRING. . . .
PUT CRLF
REPEAT
RESET.
SAMPLE
START.
G 5 o o o o o
TXTBIT

REGISTER BANK (S)

07/01/99 08:00:00 PAGE i

NE SOURCE
1 S$TITLE ('Test Program')
2 NAME SAMPLE
3
4 EXTRN CODE (PUT_CRLF, PUTSTRING, InitSerial)
5 PUBLIC TXTBIT
6
7 PROG SEGMENT CODE
8 CONST SEGMENT CODE
9 BITVAR SEGMENT BIT
10
11 CSEG AT 0
12
13 Reset: JMP Start
14
15 RSEG PROG
16 ; Kkkk%

17 Start: CALL

19 ; This is the
20 ; loop which d
21 CLR
22 Repeat: MOV
23 CALL
24 CALL
25 SJMP
26 ;

27 RSEG
28 TXT: DB

29

30

31

32 RSEG
33 TXTBIT: DBIT
34

35 END

H
L
o
]
<
>
[=

. B SEG 0001H
. C SEG 000DH
. CADDR -----
. C SEG 0010H
. CADDR -----
. CADDR -----
. C ADDR 0005H
. C ADDR 0000H
. N NUMB -----
. C ADDR 0000H
. C ADDR 0000H
. B ADDR 0000H.
USED: 0

ASSEMBLY COMPLETE. 0 WARNING(S),

InitSerial ;Init Serial Interface

main program. It is an endless
isplays a text on the console.
TXTBIT ; read from CODE
DPTR, #TXT

PUTSTRING

PUT_CRLF

Repeat

CONST
'TEST PROGRAM', 00H

BITVAR TXTBIT=0 read from CODE

TXTBIT=1 read from XDATA

i
i

UE ATTRIBUTES / REFERENCES

REL=UNIT 9# 32
REL=UNIT 8# 27
EXT 4# 17
REL=UNIT 7# 15
EXT 4# 23
EXT 4# 24
SEG=PROG 22# 25
134
2
R SEG=PROG 13 17#
R SEG=CONST 22 28#
R SEG=BITVAR 5 5 21 33#

L)

0

0 ERROR(S)

A51 produces a
listing file with line
numbers as well as
the time and date of
the translation.
Information about
assembler invocation
and the object file
generated is printed.

Getting Started and Creating Applications 35

BL51 Code Banking Linker/Locator

The BL51 code banking linker/locator combines one or more object modules
into a single executable 8051 program. The linker also resolves external and
public references, and assigns absolute addresses to relocatable programs
segments.

The BL51 code banking linker/locator processes object modules created by the

Keil C51 compiler and AS51 assembler and the Intel PL/M-51 compiler and

ASM-51 assembler. The linker automatically selects the appropriate run-time

library and links only the library modules that are required.

Normally, you invoke the BL51 code banking linker/locator from the command
line specifying the names of the object modules to combine. The default

controls for the BL51 code banking linker/locator have been carefully chosen to

accommodate most applications without the need to specify additional directives.
However, it is easy for you to specify custom settings for your application.

Data Address Management

The BL51 code banking linker/locator manages the limited internal memory of
the 8051 by overlaying variables for functions that are mutually exclusive. This
greatly reduces the overall memory requirement of most 8051 applications.

The BL51 code banking linker/locator analyzes the references between functions
to carry out memory overlaying. You may use the OVERLAY directive to
manually control functions references the linker uses to determine exclusive
memory areas. The NOOVERLAY directive lets you completely disable
memory overlaying. These directives are useful when using indirectly called
functions or when disabling overlaying for debugging.

Code Banking

The BL51 code banking linker/locator supports the ability to create application
programs that are larger than 64 Kbytes. Since the 8051 does not directly
support more than 64 Kbytes of code address space, there must be external
hardware that swaps code banks. The hardware that does this must be controlled
by software running on the 8051. This process is known as bank switching.

The BL51 code banking linker/locator lets you manage 1 common area and 32
banks of up to 64 Kbytes each for a total of 2 Mbytes of bank-switched 8051

36

Chapter 3. Development Tools

program space. Software support for the external bank switching hardware
includes a short assembly file you can edit for your specific hardware platform.

The BL51 code banking linker/locator lets you specify the bank in which to
locate a particular program module. By carefully grouping functions in the
different banks, you can create very large, efficient applications.

Common Area

The common area in a bank switching program is an area of memory that can be
accessed at all times from all banks. The common area cannot be physically
swapped out or moved around. The code in the common area is either duplicated
in each bank (if the entire program area is swapped) or can be located in a
separate area or EPROM (if the common area is not swapped).

The common area contains program sections and constants which must be
available at all times. It may also contain frequently used code. By default, the
following code sections are automatically located in the common area:

Reset and Interrupt Vectors,

Code Constants,

C51 Interrupt Functions,

Bank Switch Jump Table,

Some C51 Run-Time Library Functions.

Executing Functions in Other Banks

Code banks are selected by additional software-controlled address lines that are
simulated using 8051 port I/O lines or a memory-mapped latch.

The BL51 code banking linker/locator generates a jump table for functions in
other code banks. When your C program calls a function located in a different
bank, it switches the bank, jumps to the desired function, restores the previous
bank (when the function completes), and returns execution to the calling routine.

The bank switching process requires approximately 50 CPU cycles and
consumes an additional 2 bytes of stack space. You can dramatically improve
system performance by grouping interdependent functions in the same bank.
Functions which are frequently invoked from multiple banks should be located in
the common area.

Getting Started and Creating Applications

37

Map File

On the following page is an example listing file generated by BL51.

BL51 BANKED LINKER/LOCATER V4.00 07/01/99 08:00:00 PAGE 1 BL51 produces a
MAP file (extension
R T) e W51 withdate anc
: . . time of the link/locate

MEMORY MODEL: SMALL run.

INPUT MODULES INCLUDED: BL51 displays the
SAMPLE.OBJ (SAMPLE) invocation line and
C:\C51\LIB\C51S.LIB (?C_STARTUP) the memory model.
C:\C51\LIB\C51S.LIB (PUTCHAR)

N i mo (e Each inpuit modlo
: . and the library
C:\C51\LIB\C51S.LIB (GETKEY ; .
NESE\ETNEERE U) modules included in
the application are

LINK MAP OF MODULE: SAMPLE (SAMPLE) listed.

TYPE BASE LENGTH RELOCATION SEGMENT NAME The memory map
--- contains the usage of
the physical 8051
* Kk Kk k Kk Kk * DATA MEMORY * Kk Kk k Kk Kk *
memory.

REG 0000H 0008H ABSOLUTE "REG BANK 0"
DATA 0008H 0001H UNIT ?DT?GETCHAR
DATA 0009H 0001H UNIT _DATA GROUP_

000AH 0016H *kk GAP hk
BIT 0020H.0 0000H.1 UNIT ?BI?GETCHAR

0020H.1 0000H.7 *kk GAP hk
IDATA 0021H 0001H UNIT ?STACK
* * Kk *k Kk * * CODE MEMORY * * Kk * Kk *k *
CODE 0000H 0003H ABSOLUTE
CODE 0003H 0021H UNIT ?PR?MAIN? SAMPLE
CODE 0024H 000CH UNIT ?C_C51STARTUP
CODE 0030H 0027H UNIT ?PR?PUTCHAR?PUTCHAR
CODE 0057H 0011H UNIT ?PR?GETCHAR?GETCHAR
CODE 0068H 0018H UNIT ?PR?_TOUPPER?TOUPPER
CODE 0080H 000AH UNIT ?PR?_GETKEY? GETKEY

OVERLAY MAP OF MODULE

SEGMENT

+--> CALLED SEGMENT

?C_C51STARTUP
+--> ?PR?MAIN?SAMPL

?PR?MAIN? SAMPLE

E

SAMPLE (SAMPLE)

+--> ?PR?GETCHAR?GETCHAR
+--> ?PR?_TOUPPER?TOUPPER
+--> ?PR?PUTCHAR?PUTCHAR

?PR?GETCHAR?GETCHAR

+--> ?PR?_GETKEY? GETKEY
+--> ?PR?PUTCHAR?PUTCHAR

LINK/LOCATE RUN COMPLETE.

The overlay-map

DATA_ GROUP .
START ~ LENGTH displays the structure
of the program and
__________ the location of the bit
and data segments
of each function.
0009H 0001H

0 WARNING(S),

Warning messages
and error messages
are listed at the end
of the MAP file.
These may point to
possible problems
encountered during
the link/locate run.

0 ERROR(S)

38

Chapter 3. Development Tools

LIB51 Library Manager

The LIB51 library manager lets you create and maintain library files. A library
file is a formatted collection of object modules (created by the C compiler and
assembler). Library files provide a convenient method of combining and
referencing a large number of object modules that may be accessed by the
linker/locator.

To build a library with the uVision2 project manager enable Options for Target
— Output — Create Library. You may also call LIB51 from a DOS box. Refer
to “LIB51 /L2511 Library Manager Commands” on page 185 for command list.

There are a number of benefits to using a library. Security, speed, and
minimized disk space are only a few of the reasons to use a library.
Additionally, libraries provide a good vehicle for distributing a large number of
useful functions and routines without the need to distribute source code. For
example, the ANSI C library is provided as a set of library files.

The uVision2 project C:\KEIL\C51\RTX_TINY\RTX_TINY.UV2 allows you to
modify and create the RTXS51 Tiny real-time operating system library. It is easy
to build your own library of useful routines like serial /O, CAN, and FLASH
memory utilities that you may use over and over again. Once these routines are
written and debugged, you may merge them into a library. Since the library
contains only the object modules, the build time is shortened since these modules
do not require re-compilation for each project.

Libraries are used by the linker when linking and locating the final application.
Modules in the library are extracted and added to the program only if they are
required. Library routines that are not specifically invoked by your program are
not included in the final output. The linker extracts the modules from the library
and processes them exactly as it does other object modules.

Getting Started and Creating Applications 39

OC51 Banked Object File Converter

The OC51 banked object file converter creates absolute object modules for each
code bank in a banked object module. Banked object modules are created by the
BL51 code banking linker/locator when you create a bank switching application.
Symbolic debugging information is copied to the absolute object files and can be
used by dScope or an in-circuit emulator.

You may use the OC51 banked object file converter to create absolute object
modules for the command area and for each code bank in your banked object

module. You may then generate Intel HEX files for each of the absolute object
modules using the OH51 object-hex converter.

OH51 Object-Hex Converter

The OHS51 object-hex converter creates Intel HEX files from absolute object
modules. Absolute object modules can be created by the BL51 code banking
linker or by the OC51 banked object file converter. Intel HEX files are ASCII
files that contain a hexadecimal representation of your application. They can be
easily loaded into a device programmer for writing EPROMS.

Getting Started and Creating Applications 41

Chapter 4. Creating Applications

To make it easy for you to evaluate and become familiar with our 166 product
line, we provide an evaluation version with sample programs and limited
versions of our tools. The sample programs are also included with our standard
product kits.

NOTE

The Keil C51 evaluation tools are limited in functionality and the code size of
the application you can create. Refer to the “Release Notes” for more
information on the limitations of the evaluation tools. For larger applications,
you need to purchase one of our development kits. Refer to “Product Overview”
on page 8 for a description of the kits that are available.

the user interface to create a sample program. Also discussed are options for
generating and maintaining projects. This includes output file options, the
configuration of the C51 compiler for optimum code quality, and the features of
the pVision2 project manager.

This chapter describes the Build Mode of uVision2 and shows you how to use ﬂ

Create a Project

uVision2 includes a project manager which makes it easy to design applications
for the 8051 family. You need to perform the following steps to create a new
project:

m Start pVision2, create a project file and select a CPU from the device
database.

m Create a new source file and add this source file to the project.
m Add and configure the startup code for the 8051 device

m Set tool options for target hardware.

m Build project and create a HEX file for PROM programming.

The description is a step-by-step tutorial that shows you how to create a simple
uVision2 project.

42 Chapter 4. Creating Applications

2 Start pVision2 and Create a Project File

puVision2 is a standard Windows application and started by clicking on the
program icon. To create a new project file select from the pVision2 menu
Project — New Project.... This opens a standard Windows dialog that asks you
for the new project file name.

We suggest that you use a separate folder for each project. You can simply use
the icon Create New Folder in this dialog to get a new empty folder. Then
select this folder and enter the file name for the new project, i.e. Projectl.
uVision2 creates a new project file with the name PROJECT1.UV2 which contains
a default target and file group name. You can see these names in the Project
Window — Files.

Now use from the menu Project — Select Device for Target and select a CPU
for your project. The Select Device dialog box shows the puVision2 device
database. Just select the microcontroller you use. We are using for our
examples the Philips 80C51RD+ CPU. This selection sets necessary tool
options for the 80C51RD+ device and simplifies in this way the tool
configuration.

Select Device for Target "Target 1'

cru |

‘“endar Philips =l
Device: BICSIRD+ I~ Use 251 instead of BLST il 1ivision2
i @ Release Motes

Farmily: MCS-51 B Wee AZE instead o A5l
2 uhision? User's Guide
Data base contents Description m Tools User's Guide
3 83/87C751 =l [a081 based CMOS contollerwith PCA, Dual DFTR, WDT. : e Felease Motes
3 83/87C7852 32 1/0 lines. 3 Timers/Counters, 7 Interrupts/4 priory levels . .
..... 1 83C502 54 K ISP FLASH EPROM, 256 Bytes on-chip PAM, addition B uvision2 Getting Started
----- (3870882 @ 051 User's Guide
----- [0 570652 @ AZB1/ART User's Guide
(2 scs1RC. @ RT*E1 Tiny User's Guide

----- [0 851 /8xCLE1 Cevice Data Books

----- [8xCH1FA/BxLB1FA @ Data Sheet
(3 65 1FB/BcL51FB & Add on databooks
[0 8xCOTFC/RALETFC L& Programmer's Guide & Instruct
----- [0 8xC52
-8 ST Microelectronics
1 TOK il I i3
= Temic b =] Files Reus Books
-8 Triscend = . ‘|§_ ':m
0K I Cancel

On some devices, the uVision2 environment needs additional parameters that
you have to enter manually. Please carefully read the information provided
under Description in this dialog, since it might have additional instructions for
the device configuration.

Getting Started and Creating Applications 43

Once you have selected a CPU from the device database you can open the user
manuals for that device in the Project Window — Books page. These user
manuals are part of the Keil Development Tools CD-ROM that should be present
in your CD drive.

2l Create New Source Files

You may create a new source file with the menu option File — New. This opens
an empty editor window where you can enter your source code. pVision2
enables the C color syntax highlighting when you save your file with the dialog
File — Save As... under a filename with the extension *.C. We are saving our
example file under the name MAIN.C.

B H:\Project!ymain.c oL=|
#include <regSi1f.h> /% special function registers for 80S1RD+ device =/ I~

Frannoooaannanoa /

/* main program x/

O33N R)

void main (veid) { /% execution starts here =/
unsigned char 1i;

while (1) { /% an embedded application neuver stops =/
for (i = Bx01; i <= 0x80; i <= 1)
P1 = i; /% Write new value to P1 7
}
}
)
el Bl

Once you have created your source file you can add this file to your project.
uVision2 offers several ways to add source files to a project. For example, you
can select the file group in the Project Window — Files page and click with the
right mouse key to open a local menu. The option Add Files opens the standard
files dialog. Select the file MAIN.C you have just created.

EF

=3 Targst |

Source Group 1

et Device far e et Margetl
Options for Group 'Source Group 1"

(0 a}=1)5 | =

Add Files to Group 'Source Group 1!

Femove Group 'Source Group 1'and it's Files

" B Files |§' Regs | () Books I

44

Chapter 4. Creating Applications

Add and Configure the Startup Code

The STARTUP.ASI file is the startup code for the most 8051 CPU variants. The
startup code clears the data memory and initializes hardware and reentrant stack
pointers. In addition, some 8051 derivatives require a CPU initialization code
that needs to match the configuration of your hardware design. For example, the
Philips 8051RD+ offers you on-chip xdata RAM that should be enabled in the
startup code. Since you need to modify that file to match your target hardware,
you should copy the STARTUP.AS1 file from the folder C:\KEIL\C51\LIB to your
project folder.

It is a good practice to create a new file group for the CPU configuration files.
With Project — Targets, Groups, Files... you can open a dialog box where you
add a group named System Files to your target. In the same dialog box you can
use the Add Files to Group... button to add the STARTUP.AS51 file to your
project.

Uit (e, (il HE The Project Window — Files
Tetgl] &0 5% A4 A | lists all items of your project.

— Group to Add

1=

System Files| Add EE Targeﬂ

E-23 Source Group 1

main.c

Ea Swstemn Files
‘[Starup.as

- Awailable Groups

Source Group 1

System Files

Add Files to Group... | Bemowe Group |
| Files ||§ Regs I tﬂlBuoks I
aK I Cancel |

The uVision2 Project Window — Files should now show the above file
structure. Open STARTUP.A51 in the editor with a double click on the file name
in the project window. Then you configure the startup code as described in
“Chapter 10. CPU and C Startup Code” on page 173. If you are using on-chip
RAM of your device the settings in the startup code should match the settings of
the Options — Target dialog. This dialog is discussed in the following.

Getting Started and Creating Applications 45

&\ Set Tool Options for Target

uVision?2 lets you set options for your target hardware. The dialog Options for
Target opens via the toolbar icon. In the Target tab you specify all relevant
parameters of your target hardware and the on-chip components of the device
you have selected. The following the settings for our example are shown.

Options for Target "Target 1' [2]x]

Target |Output | Listing | Ch1 |A51 I L51 Lucatel L51 MISCI Debug |

el (MHz): [33.0 = s Or=ehim SO IR)

Philips 89C51RD+

ermary Mol ISma\I: wariables in DATA j = s e Or-ship Attt etic Wi
Code Raom Size ILarge B4k program j ™ Use multiple DFTR registers
Operating systerm INDne j = Wee Onrchif AR (R0
— Off-chip Code mermary - Off-chip Xdata memary
Start: Size Start: Size:

Eppll IDxDDDU Fam #1: 00000
Eprom #2: I—l— Fam #2: I—l—
Eprorm #3: I Rarm #3:

™ Code Banking Start End = ¥ =t Banking Start End

Banks |2 'l Bank Area: ID)‘DDDU 10000 Banks: |2 - Bank Area: |H<0000 00000
,TI Cancel | Defaults |

The following table describes the options of the Target dialog:

Dialog Item Description ‘

Xtal specifies the CPU clock of your device. In most cases this value is
identical with the XTAL frequency.

Memory Model specifies the C51 compiler memory model. For starting new applications
the default SMALL is a good choice. Refer to “Memory Models and
Memory Types” on page 67 for a discussion of the various memory models.

Allocate On-chip ... specifies the usage of the on-chip components which are typically enabled
Use multiple DPTR in the CPU startup code. If you are using on-chip xdata RAM (XRAM) you
registers should also enable the XRAM access in the STARTUP.A51 file.
Off-chip ... Memory here you specify all external memory areas of the target hardware.
Code Banking specifies the parameters for code and xdata banking.
Xdata Banking

NOTE

Several Options in the Target dialog are only available if you are using the L251
Linker/Locater. The L251 Linker/Locater is available for the 8051 within the
C51 Variable Banking extension that is available as add-on product to the C51
Compiler. Check www.keil.com for details.

46 Chapter 4. Creating Applications

Build Project and Create a HEX File

Typical, the tool settings under Options — Target are all you need to start a new
application. You may translate all source files and line the application with a
click on the Build Target toolbar icon. When you build an application with
syntax errors, uwVision2 will display errors and warning messages in the Qutput
Window — Build page. A double click on a message line opens the source file
on the correct location in a pVision2 editor window.

Build target 'Target 1'

compiling main.c...

.N\MAIN.C(14): error 67: 'var': undefined identifier
NMAIN.C(15): error 67: 'Port?7': undefined identifier
N\MAIN.C(B): warning 47: 'j': unreferenced local wvariable
N\MAIN.C(13): warning 47: 'lab': unreferenced label
Target not created

[T TR, Build £ Command }, Findin Fies |4

e

of

]

Build target 'Target 1'

compiling main.c...

assembling Startup.a51l...

linking...

creating hex file from "Projectl™...
"Projectl" - 0 Error(s). D Warning(s).

b

AT AT* T, Buitd £ Comrmand A Find in Files /. L«

Once you have successfully generated your application you can start debugging.
Refer to “Chapter 5. Testing Programs” on page 81 for a discussion of the
puVision2 debugging features. After you have tested your application, it is
required to create an Intel HEX file to download the software into an EPROM
programmer or simulator. pVision2 creates HEX files with each build process
when Create HEX file under Options for Target — Output is enabled. The
Start, End and Offset values are only available if you are using the L251
Linker/Locater. You may start your PROM programming utility after the make
process when you specify the program under the option Run User Program #1.

Options for Target "Target 1°

Terget Outout |Lising | c81 | A81 | L51 Locate | L51 Misc] Debug |

‘ Select Folder for Ohjects I

Name of Executable: IPVDJECﬂ

* Create Executable: \Praject]

¥ Debug Information ¥ Browse Infarmation

W Create HEXFile HEXFormat [HEX-60

=

" Create Libran: \Projectl LIB

Start: I

m
=
=

Offset:

—After Make

W Beep'Wwhen Complete

I~ iRun User Pragram #15 |

Browse..

™ Run User Program #2: I

i

Browse..

oK Cancel

Defaults

Getting Started and Creating Applications 47

Now you can modify existing source code or add new source files to the project.
The Build Target toolbar button translates only modified or new source files
and generates the executable file. pVision2 maintains a file dependency list and
knows all include files used within a source file. Even the tool options are saved
in the file dependency list, so that pVision2 rebuilds files only when needed.
With the Rebuild Target command, all source files are translated, regardless of
modifications.

Project Targets and File Groups

By using different Project Targets uVision2 lets you create several programs
from a single project. You may need one target for testing and another target for
a release version of your application. Each target allows individual tool settings
within the same project file.

Files Groups let you group associated files together in a project. This is useful
for grouping files into functional blocks or for identifying engineers in your
software team. We have already used file groups in our example to separate the
CPU related files from other source files. With these technique it is easily
possible to maintain complex projects with several 100 files in pVision2.

The Project — Targets, Groups, Files... dialog allows you to create project
targets and file groups. We have already used this dialog to add the system
configuration files. An example project structure is shown below.

d= | The Project Windows shows all groups and the
Em%g;iﬁf;easwd related files. Files are built and linked in the same
¥ file2.c order as shown in this window. You can move
filel.c file positions with Drag & Drop. You may select
il main.c a target or group name and Click to rename it.
=29 Peter . . .
T filed.c The local menu opens with a right mouse Click
filad.c and allows you for each item:
He} S;?;”nig?;m e to set tool options e to add files to a group
- [#] monitor.a51 e to remove the item e to open the file.
=23 10 Fil . .
o EEI ;,Ef;h arc In the build toolbar you can quickly change the
[Getkey.c current project target to build.
Y proj g
=23 Documentation
dme. b =
e \[MCB251 Board ~|
" ElFlles P Regs | L Books I MCB251 Board

Test Hardware

48

Chapter 4. Creating Applications

View File and Group Attributes in the Project Window

Different icons are used in the Project Window — Files page to show the
attributes of files and file groups. These icons are explained below:

Files that are translated and linked into the project are marked with an
arrow in the file icon.

Files that are excluded from the link run do not have the arrow. This is
typical for document files. However you may exclude also source files
when you disable Include in Target Build in the Properties dialog. See
also “File and Group Specific Options — Properties Dialog” on page 75.

Read only files are marked with a key. This is typical for files that are
checked into a Software Version Control System, since the SVCS makes
the local copy of such files read only. See also “Using the SVCS Menu”
on page 64.

Files or file groups with specific options are marked with dots. Refer to
“File and Group Specific Options — Properties Dialog” on page 75 for
3 more information.

NOTE

The different icons give you quick overview of the tool settings in the various
targets of a project. The icons reflect always the attributes of the current
selected target. For example, if you have set specific options on a file or file
group in one target, then the dots in the icon are only shown if this target is
currently selected.

Overview of Configuration Dialogs

The options dialog lets you set all the tool options. Via the local menu in the
Project Window — Files you may set different options for a file group or even a
single file; in this case you get only the related dialog pages. With the context
help button [Z] you get help on most dialog items. The following table describes
the options of the Target dialog.

Getting Started and Creating Applications 49

Dialog Page Description ‘

Target Specify the hardware of your application. See page 52 for details.

Output Define the output files of the tool chain and allows you to start user programs after
the build process. See page 70 for more information.

Listing Specify all listing files generated by the tool chain.

C51 Set C51 compiler specific tool options like code optimization or variable allocation.
Refer to “Other C51 Compiler Directives” on page 68 for information.

A51 Set assembler specific tool options like macro processing.

A251

L51 Locate Define the location of memory classes and segments. Typical you will enable Use

L251 Locate Memory Layout from Target Dialog as show below to get automatic settings.

Refer to “Locate Segments to Absolute Memory Locations” on page 74 for more
information on this dialog.

L51 Misc Other linker related settings like Warning or memory Reserve directive. You

L251 Misc need to reserve some memory locations when you are using Monitor-51 for
debugging.

Debug Settings for the pVision2 Debugger. Refer to page 88 for more information.

Properties File information and special options for files and groups refer to “File and Group

Specific Options — Properties Dialog” on page 75.

Below the L51 Locate dialog page is shown. When you enable Use Memory
Layout from Target Dialog 1 Vision2 uses the memory information from the
selected Device and the Target page. You may still add additional segments to
these settings.

Options for Target 'Small Model' HE

Terget | Outout | Listing | 251 | 51 LE1 Lacate | L51 Misc | Debug |

¥ ise Memory Leyout from Target Dialog

Space Base Segrents
Code: |nxnunu |

elate: |nxnunu |

Edata:

Precede: I
Bit | |
Data: I I
Idata I I
Stack: I
Linker ITQ "Project" ﬂ
control | RAMSIZE(ZEE)
sting |CODE(0x0000) =

oK I Cancel Defaults

50 Chapter 4. Creating Applications

MVision2 Utilities

uVision2 contains many powerful functions that help you during your software
project. These utilities are discussed in the following section.

“ Find in Files

The Edit — Find in Files dialog performs a global text search in all specified
files. The search results are displayed in the Find in Files page of the Output
window. A double click in the Find in Files page positions the editor to the text
line with matching string.

(@ Source Browser

The Source Browser displays information about program symbols in your
program. If Options for Target — Output — Browser Information is enabled
when you build the target program, the compiler includes browser information
into the object files. Use View — Source Browser to open the Browse window.

Lz Browse - C:\Keil\C51\EXAMPLES\MEASURE \Measure M= E3
Symbaol: I* j Memory Spaces: M idata v edata
Filter on: Macros Data e data hdata
: - ¥ pdata
Functions Str(Bits) o i
Parameters Types V¥ code
File Outline: I(a\lf\les) j
¥ Name | Class Type Space | Lges | | [Definitions and References - current
_set_time function function code 3 =] CAKeil CE1 ExAMPLESY\MEASURE \Measure.c
_sscanf function function code 4 id? [D]Line B2
_talawer function function code 1 il [R]Line 83
_tolower macro none 1 idd R Line 128 [rfw]
_toupper function function code 2 A (R Ling 124 [w]
_toupper macro none 1 il (R Ling 137 [rfw]
analog ;netmber arrhay " S idl [R] Line 132 [w]
args ata uchar ata i TR Line 134
buffer data ptra data i :d: ER% L:EEHS Ex]\'v]
C data char data B 'd.:
clear_records frmotice drueobie moda 2 Y "
clock | Show 'C:AKeil\,C514EXAMPLES\MEASURE \Measure.c (137)) |[F]Line 138 [w]
crdbuf data array idata 9 .‘“5 [R]Line 145 [w]
cnt data. uchar data. 6 ‘d: [R]Line 145 [w]
current data struct data 16 "'I‘db [R] L!”E 15211
disp data. struct data. 1 il [R] Line 265 1]
display data struct data] BB ChKeil\C5 T4 EXAMPLES{MEASURE YMeammand.
hour member uchar] ~idd [R]Line 32
i data uchar data 15 il [R Line 78 [w]
ichx data uint data] |~ |

The Browse window lists the symbol name, class, type, memory space and the
number of uses. Click on the list item to sort the information. You can filter the
browse information using the options described in the following table:

Getting Started and Creating Applications 51

Browse Options Description ‘

Symbol specify a mask that is used to match symbol names. The mask may consist
of alphanumeric characters plus mask characters:
matches a digit (0 — 9)
$ matches any character

* matches zero or more characters.
Filter on select the definition type of the symbol
File Outline select the file where information should be listed for.
Memory Spaces specify the memory type for data and function symbols.

The following table provides a few examples of symbol name masks.

Matches symbol names ...

* Matches any symbol. This is the default mask in the Symbol Browser.
H* ... that contain one digit in any position.
_a$#* ... with an underline, followed by the letter a, followed by any character, followed by a

digit, ending with zero or more characters. For example, _ab1 or _a10value.

*ABC ... with an underline, followed by zero or more characters, followed by ABC.

52 Chapter 4. Creating Applications

The local menu in the Browse window opens with a right Call Graph - main
mouse Click and allows you to open the editor on the =-f0 main
R Y I £ nrintt

selected reference. For functions you can also view the | 0 ot o
Call and Callers graph. The Definitions and References | -) _getkey
view gives you additional information with the following 0 ;”f;j:f—d'”'ay
syrnbols: L‘—_|f{} set_interval

-0 printf

—r () sscant

Symbol Description 20 set_time

-0} printf

[D] Definition) sscant
[R] Reference 0 read_index
" read access 40 sscanf
[w] write access ~F) nrintf
[r/w] read/write access

[&] address reference

You may use the browser information within an editor

window. Select the item that you want to search for and Callers Graph - prinf
open the local menu with a right mouse click or use the E"'fg_f_””rt;a .
following keyboard shortcuts: Ldama

L.4m main
Shortcut Description

| F12 Goto Definition; place cursor to the symbol definition |
| Shift+F12 Goto Reference; place cursor to a symbol reference |
[Ctrl+Num-+ Goto Next Reference or Definition |
| Ctrl+Num-— Goto Previous Reference or Definition |

Key Sequence for Tool Parameters

A key sequence may be used to pass arguments from the pVision2 environment
to external user programs. Key sequences can be applied in the Tools menu,
SVCS menu, and the Run User Program arguments in the Options for Target
— Output dialog. A key sequence is a combination of a Key Code and a File
Code. The available Key Codes and File Codes are listed in the tables below:

Key Code Specifies the path selected with the File Code ‘

% filename with extension, but without path specification (PROJECT1.UV2)

filename with complete path specification (C:\MYPROJECT\PROJECT1.UV2)
% filename with extension, but without path specification (PROJECT1.UV2)

@ filename without extension and path specification (PROJECT1)

$ folder name of the file specified in the file code (C:\MYPROJECT)

= i line number of current cursor position (only valid for file code F)

At column number of current cursor position (only valid for file code F)

Getting Started and Creating Applications 53

1 the key code ~ and * can be used only in combination with the file code F
To use $, #, %, @, ~ or ” in the user program command line, use 3, ##, %%, @@, ~~ or ™.
For example @@ gives a single @ in the user program command line.

File Code Specifies the file name or argument inserted in the user program line

F selected file in the Project Window - Files page (MEASURE.C). Returns the
project file if the target name is selected or the current active editor file if a group
name is selected.

P name of the current project file (PROJECT1.UV2)

L linker output file, typical the executable file for debugging (PROJECT1)

H application HEX file (PROJECT1.H86)

X pVision2 executable program file (C:\KEIL\UV2\UV2.EXE)

The following file codes are used for SVCS systems.
For more information refer to “Using the SVCS Menu” on page 64.

Q f file name that holds comments for the SVCS system.

R + string that holds a revision number for the SVCS system.

C i string that holds a check point string for the SVCS system.

U T user name specified under SVCS — Configure Version Control — User Name

V 7 file name specified under SVCS — Configure Version Control — Database

T the file codes Q, R, C, U and V can be used only in combination with the key code %

Using the Tools Menu

Via the Tools menu, you — HUE=EILIALYE [71]

run external programs. IMenu Cantent slx(2+
Use my &Editor '#F'

You may add custom Stort Emulator and load %L Cancel

AProgram EPROM with '#H'

programs to the Tools
menu with the dialog
Tools — Customize ™ Promptfor Arguments
Tools Menu.... This ¥ Run Minimized
dialog configures the

parameters for external

user applications. The Command: |C\UTILTIES\PROM EXE

dialog right shows a Iitisl Foldar |
sample tool setup. The Acguments, ["#H" 427512
dialog options are
explained in the table
below.

ol

54 Chapter 4. Creating Applications

The above entries extend Customize Tools Menu...
the Tools menu as Use rry Edlitor 'CAKeil\C1BEY EXAMPLESYHELLOY Start] 67266
shown right, Start Ernulator and load 'Hello!

Prograrm EPROM with 'C\Keil\C166YEXAMPLESYHELLOYHello HEE!

Dialog Item Description ‘

Menu Content text shown in the Tools menu. This line may contain key codes and file
codes. Shortcuts are defined with a & character. The current selected
menu line allows you to specify the options listed below.

Prompt for if enabled, a dialog box opens at the time you invoke the menu item that
Arguments allows you to specify the command line arguments for the user program.
Run Minimized enable this option to execute the application with minimized window.
Command program file that is executed with the selected menu item.

Initial Folder current working folder for the application program. [f this entry is empty,

pVision2 uses the base folder of the project file.

Arguments command line arguments that are passed to the application program.

The output of command line based application programs is copied to a temporary
file. When the application execution completes the content of this temporary file
is listed in the Output Window — Build page.

Running PC-Lint

PC-Lint from Gimpel Software checks the syntax and semantics of C programs
across all modules of your application. PC-Lint flags possible bugs and
inconsistencies and locates unclear, erroneous, or non-sense C code. PC-Lint
may considerably reduce the debugging effort of your target application.

Install PC-Lint on your C‘”“‘ Qptions 2=
PC-Lint Include Directories é“'”EI)'(1+ +
PC and enter parameters T

in the dialog Tools — e A CAnean
includes

Setup PC Lint. The

example shows a typical

PC-Lint configuration.

To get correct output in
the Build page, you
should use the
configuration file that is
located in the folder

KEIL\CS1\BIN. ok | Cancel

L Bttt |c WLINTYLint-nt exe

ol

Configuration File Ic::\KeM\CSHEIIN\CkaCST Int

Getting Started and Creating Applications 55

After the setup of PC-Lint you may Lint¢ your source code. Tools — Lint ... runs
PC-Lint on the current in focus editor file. Tools — Lint All C Source Files runs
PC-Lint across all C source files of your project. The PC-Lint messages are
redirected to the Build — Output Window. A double click on a Lint message
line locates the editor to the source file position.

X[Running PC-Lint... -
dipc-1int for C/C++ (NT) Ver. 7.50k, Copyright Gimpel Software 1985-1998
NMcommand.c (77.22): Warning 524: Loss of precision (assignment) (float to unsigned char)
SMcommand .c(77.22): Info 732: Loss of sign (assignment) (float to unsigned char)
-\Mcommand .c(78,.44): Warning 524: Loss of precision (assignment) (float to unsigned int)
“Mcommand.c(78.44): Info 732: Loss of sign (assignment) (float to unsigned int)
.“Measure.c(141,24): Info 737: Loss of sign in promotion from int to unsigned int
NMeasure.c(141,.24): Info 713: Loss of precision (assignment) (unsigned int te int)
-“Measure.c(142.26): Info 737: Loss of sign in promotion from int to unsigned int
.“Measure.c(142,26): Info 713: Loss of precision (assignment) (unsigned int to int) lj
|

[TE 0, Build Find in Files |«

To get correct results in the Build — Qutput Window, PC-Lint needs the
following option lines in the configuration file:

-hsb_3 // 3 lines output, column below
-format="*** LINT: %(%f(%l) %)%t %n: %m" // Change message output format
-width(0,10) // Don't break lines

The configuration file C:\KEIL\C51\BIN\CO-KC51.LNT contains already these
lines. It is strongly recommended to use this configuration file, since it contains
also other PC-Lint options required for the Keil C51 compiler.

Siemens Easy-Case

puVision2 provides a direct interface to Siemens Easy-Case. EasyCase is a
graphic editor as well as a program documentation utility. You may use
EasyCase to edit source code. Also some pVision2 debugger commands are
available within the EasyCase environment.

Install EasyCase: to use pVision2 debugger commands within Siemens
EasyCase the configuration settings from the file C:\KEIL\UV2\UV2EASY-CPP.INI
should be added to the file EASY-CPP.INI that is stored in the WINDOWS system
directory. This may be done with any text editor or the DOS copy command:

C:\>CD C:\WINNT
C:\WINNT>COPY EASY-CPP.INI+C:\KEIL\UV2\UV2EASY-CPP.INI EASY-CPP.INI

56

Chapter 4. Creating Applications

In the pVision2 dialog
Tools — Setup Easy-Case
enter the path for EASY-
CPP.EXE. This completes
the configuration for
Siemens EasyCase.

Setup Easy-Case [x]

Cancel

Eath for Easy-Case Executable 'Easy-Cpp.Exe’

IC:\Program FileshSiernens EasyCase\Easy-cpp exe

View Source Code with EasyCase: with Tools — Start/Stop EasyCase you
start EasyCase. The menu item Tools — Show ... opens the active pVison2
editor file at the current position. The EasyCase menu pVision2 offers several
debug commands that allow program execution in the pVision2 debugger.

EasyCASE(C++) - [Measure.c (Schreibgesch

Qatei Bearbeiten Einfligen Positionieren

] == E N A A EA EA

Funktion f+ The following function is

/
!

1%

Save current mex.

1) - $4:5ave_measurements]

Optionen Eenster 2 == %]
Go Ctrl+F5 J ? |A,|
Step Over Ctrl+F10 =
Step Into Cirl+F11 I~
Step Out Shift+F11
Goto Definition Ctrl+F12
Goto Reference Shift+F12 ervice routine. #f
Mext RetfDef Ctrl+Fa)

Previous Ref/Def Shift+F9

#l

/

void save_measurements ()

save_record[sindex++] = current;

= copy current measurements

it [sindex==35CNT)

then
sindex = 0; #% check bounds of sindex =/
if (sindex == savefirst) =
then else
I check circular buffer limits=f
if (++savefirst == SCNT) =
Debug Command Extensions |B xH1x1 ’_| ’—’_ 7

Using the SVCS Menu

puVision2 provides a configurable interface to Software Version Control Systems
(SVCS). Pre-configured template files are provided for: Intersolv PVCS,
Microsoft SourceSafe, and MKS Source Integrity.

Getting Started and Creating Applications 57

Via the SVCS Menu you Configure Software Version Control System [2]=]
Call the Commal’ld llne Template File: IC.\KT\I\UVE\MlcrUSDﬂV\Sual SourceSafe.5VCE J
. User N - [Mike]
tools of your Version SR
C tro] System The Database: I\\F\LE?SERVER\SYS\VSS J
on .

. Qi f
configuration of the e Conten EIESETET Y i
SVCS menu IS S'[Ol'ed ln Check &ln' I ™ Bevision

. . Check &0ut '%F' -~
a Template Flle Thls &Put Current Version of '%F' ™ Check Paint
. f d . h iide;AﬁaIVerswonsl‘%F'
"#F' t ject
menu 1S configured wit Sadd #F"to cunent Proje
1 &Hist f'5eF
the dlalog SVCS - &C;Z;{g;m}ed'@p
Customize SVCS &Set current Project '(@P' =l I~ Run Minimized
. Cornmand: S:yProgram FileshMicrosoft Wisual Studioh S Siwin32\ Ssexp.exe J
Mepu.... The dlglog e [0
options are explained R
below.
OK I Cancel |
Dialog Item Description
Template File name of the SVCS menu configuration file. It is recommended that all

members of the software team are using the same template file. Therefore
the template file should be copied to the file server.

User Name user name that should be used to log into the SVCS system. The user
name is passed with the %U file code in the argument line.

Database file name or path for the database used by the SVCS system. The database
string is passed with the %V file code in the argument line.

Menu Content text shown in the SVCS menu. This line may contain key codes and file
codes. Shortcuts are defined with a & character. The selected menu line
allows you to specify the options listed below.

Query for ... allows you to ask for additional information when using the SVCS
Comment command. A comment is copied into a temporary file that can be passed
Revision with the file code %Q as argument to the SVCS command. Revision and
CheckPoint CheckPoint are passed as a string with %R and %C file code.

Run Minimized enable this option to execute the application with minimized window.

Command program file that is invoked when you click on the SVCS menu item.

Arguments command line arguments that are passed to the SVCS program file.

Environment environment variables that are set before execution of the SVCS program.

The output of command line SVCS application programs is copied to a
temporary file. When the SVCS command completes the content of this
temporary file is listed in the Qutput Window — Build page.

58

Chapter 4. Creating Applications

5 TRAFFIC [Read Only] - tVision2
File Edit ¥iew Project Debug Peripherals Tools | SVCS Window Help

A sample SVCS menu is
shown on the right. A
selected file in the page
Project Window — Files |[=5 smaitiodel
is the SVCS argument. T e
The target name selects o
the *.UV2 project file. £ &3 Documentetion

A=l g | % B | == LConfigure Version Control... 'a
SourceSafe Explorer

Check In '"Serial ¢’
Check Out 'Serial.c'

Undo Check Out'Serial.c'

PBut Current Version of 'Serial ¢’
Get Actual Version of 'Serial.c'

Add 'Serial.c' to current Project
57 Abstractid Differences of 'Setial.c'
The local copy of a 5 & Include Files History of 'Sarial.c!
looked file is read-only B Trafich Create Project TRAFFIC
Set current Project TRAFFIC!
and gets a key symbol.

uVision2 projects are saved in two separate files. Project settings in *.UV2: this
file should be looked with the SVCS and is sufficient to re-build an application.
The local pVision2 configuration in *.OPT contains window positions and
debugger settings.

The following table lists typical SVCS menu items. Depending on your
configuration, additional or different items might be available. Include files may
be added to the project as document file to access them quickly with the SVCS.

SVCS Menu Item Description ‘

Explorer start the interactive SVCS explorer.

Check In save the file in the SVCS database and make the local copy read-only.
Check Out get the actual file version from the SVCS and allows modifications.
Undo Check Out undo the check out of a file.

Put Current Version save a local file in the SVCS database but still allow modifications to it.
Get Actual Version get a current read-only copy of a file from the SVCS.

Add file to Project add the file to the SVCS project.

Add file to Project add the file to the SVCS project.

Differences, History show SVCS information about the file.

Create Project create a SVCS project with the same name as the local pVision2 project.

NOTES
The pre-configured *.SVCS files may be modified with a text editor to adapt
program paths and tool parameters.

Microsoft SourceSafe requires the command Set Current Project after you have
selected a new uVision2 project. Remove the SSUSER environment variable
from the configuration to use the login name of the workstation.

MKS Source Integrity is pre-configured to create a project database on a server
and a local sandbox workspace on the workstation.

Intersolv PVCS is not pre-configured for creating and maintaining projects.

Getting Started and Creating Applications 59

Writing Optimum Code

Many configuration parameters have influence on the code quality of your 8051
application. Although, for most applications the default tool setting generates
very good code, you should be aware of the parameters which improve code
density and execution speed. The code optimization techniques are described in
this section.

Memory Models and Memory Types

The most significant impact on code size and execution speed has the memory
model. The memory model influences variable accesses. Refer to “Memory
Models” on page 25 for detailed information. The memory model is selected in
the Options for Target — Target dialog page.

Global Register Optimization

The Keil 8051 tools provide support for application wide register optimization
which is enabled in the Options for Target — C51 dialog with Global Register
Optimization. With the application wide register optimization, the C51
compiler knows the registers used by external functions. Registers that are not
altered in external functions can be used to hold register variables. The code
generated by the C compiler needs less data and code space and executes faster.
To improve the register allocation, the uVision2 build process makes
automatically iterative re-translations of C source files.

In the following example input and output are external functions, which require
only a few registers.

With Global Register Optimization Without Global Register Optimization
main () {
unsigned char i;
unsigned char a;
while (1) {
i = input (); /* get number of values */
?C0001: ?C0001:
LCALL input LCALL input
;- 'i' assigned to 'R6' - MOV DPTR, #i
MOV R6,AR7 MOV A,R7
MOV @DPTR, A
do {
a = input (); /* get input value */

60 Chapter 4. Creating Applications

With Global Register Optimization Without Global Register Optimization
2C0005: 2C0005:
LCALL input LCALL input
;- 'a' assigned to 'R7' - MOV DPTR, #a
MOV R5,AR7 MOV A,R7
MOVX @DPTR, A
output (a); /* output value */
LCALL _output LCALL _output
} while (-i); /* decrement values */
DJNZ R6,7?2C0005 MOV DPTR, #i
MOVX A,@DPTR
DEC A
MOVX @DPTR, A
JINZ 2C0005
}
SJMP 2C0001 SJMP 2C0001
}
RET RET

Code Size: 18 Bytes Code Size: 30 Bytes ‘

Other C51 Compiler Directives

There are several other C51 directives that improve the code quality. These
directives are enabled in the Options — C51 dialog page. You can translate the C
modules in an application with different compiler settings. You may check the
code quality of different compiler settings in the listing file.

Options for Target 'Standard® [2]x]
Target | Output | Listing =51 |A51 | L51 Lucatel L51 Miscl Diebug |

- Preprocessor Symbaols

Ol IChecK NOExtFiarm, X1=1+5

Undefine: I

— Code Optimization

Mamings: |YWarninglevel 2 j
Bits to round for float compare: |3 -
V¥ Interrupt vectors at address 00000

™ Keep wariables in order

Level IS: Comman tail merging j

Emphasis IFa\:orexecutiDn speed j

™ Global Register Colating

, .
I~ Don'tuse absolute register accesses [Enable ANE] intagar promation rules

Misc
Caontrols

Campiler |BROWSE DEFINE (Check MoExtRam <1="1+5") OBJECTEXTEMND DEBUG SvMBOLS
control

string =l
0K I Cancel Defaults

L]

Getting Started and Creating Applications 61

The following table describes the options of the C51 dialog page:

Dialog Item Description ‘

Define outputs the C51 DEFINE directive to enter preprocessor symbols.

Undefine is only available in the Group and File Options dialog and allows you to
remove DEFINE symbols that are specified at the higher target or group
level.

Code Optimization specifies C51 OPTIMIZE level. Typical you will not alter the default. With

Level the highest level “9: Common block subroutine packing” the compiler
detects multiple instruction sequences and packs such code into
subroutines. While analyzing the code, the compiler also tries to replace
sequences with cheaper instructions. Since the compiler inserts sub-
routines and CALL instructions, the execution speed of the optimized code
might be slower. Typical this level is interesting to optimize the code

density.
Code Optimization You can optimize for execution speed or code size. With “Favor Code
Emphasis Size”, the C51 compiler uses library calls instead of fast replacement code.
Global Register enables the “Global Register Optimization”. Refer to page 67 for details.
Optimization
Don't use absolute disables absolute register addressing for registers RO through R7. The
register accesses code will be slightly longer, since C51 cannot use ARx symbols, i.e. in
PUSH or POP instructions and needs to insert replace code. However the
code will be independent of the selected register bank.
Warnings selects the C51 warninglevel. Warninglevel 0 disables all warnings.
Bits to round for float ~determines the number of bits to rounded before a floating-point compare is
compare executed.
Interrupt vectors at instructs the C51 compiler to generate interrupt vectors for interrupt
address functions and specifies the base address for the interrupt vector table.
Keep Variables in tells the C51 compiler to order the variables in memory according their
Order definition in the C source file. This option does not influence code quality.

Enable ANSI interger expressions used in if statements are promoted from smaller types to
promotion rules integer expressions before comparison. This gives typically longer code,
but is required to be ANSI compatible.

Misc Controls allows you to enter special C51 directives. You may need such options

when you are using very new 8051 devices that require special directives.
Compiler Control displays the C51 compiler invocation string. Allows you can verify the
String compiler options currently for your source files.

Data Types

The 8051 CPU is an 8-bit microcontroller. Operations that use 8-bit types (like
char and unsigned char) are more efficient than operations that use int or long

types.

62 Chapter 4. Creating Applications

Tips and Tricks

The following section discusses advanced techniques you may use with the
uVision2 project manager. You will not need the following features very often,
but readers of this section get a better feeling for the uVision2 capabilities.

Import Project Files from pVision Version 1
You can import project files from uVisionl with the following procedure:

1. Create a new uVision2 project file and select a CPU from the device database
as described on page 48. It is important to create the new puVision2 project
file in the existing wVisionl project folder.

2. Select the old uVisionl project file that exists in the project folder in the
dialog Project — Import nVisionl Project. This menu option is only
available, if the file list of the new uVision2 project file is empty.

3. This command imports the old uVisionl linker settings into the linker
dialogs. But, we recommend that you are using the uVision2 Options for
Target — Target dialog to define the memory structure of your target
hardware. Once you have done that, you should enable Use Memory Layout
from Target Dialog in the Options for Target — L51 Locate dialog and
remove the settings for User Classes and User Sections in this dialog.

4. Check carefully if all settings are copied correctly to the new pVision2
project file.

5. You may now create file groups in the new pVision2 project as described
under “Project Targets and File Groups” on page 54. Then you can Drag &
Drop files into the new file groups.

NOTE

1t is not possible to make a 100% conversion from uVisionl project files since
uVision?2 differs in many aspects from the previous version. After you have
imported your uVisionl check carefully if the tool settings are converted
correctly. Some uVisionl project settings, for example user translator and
library module lists are not converted to the uVision2 project. Also the dScope
Debugger settings cannot be copied to the uVision2 project file.

Start External Tools after the Build Process

The Options for Target — Output dialog allows to enter up to two users
programs that are started after a successful build process. Using a key sequence

Getting Started and Creating Applications 63

you may pass arguments from the pVision2 project manager to these user
programs. Refer to “Key Sequence for Tool Parameters” on page 60.

Options for Target 'Standard® [2]x]
Target Output |Listing | €81 | A1 | L81 Locate | L81 Misc| Debug |
| Select Folder for Objects... I MName of Executakle IF”UJECU

&+ Create Executakle: \Project]

¥ Dehbug Information W Browse Infarmation

I Create HEXFile HEXFarmat [HEX80 o =

m
I=
o

Offset

£ Create Library: \Project] LIB

—After Make

¥ Beep‘When Complete
V¥ Run User Program #1 IC:\UUht\es\Pngrammer.exe -cl27512 #H Brawse...

¥ Fun User Program #2: IC:\Debug\Emu\atDrexe "l -ptept Browse...

0K | Cancel | Defaults |

In the example above the User Program #1 is called with the Hex Output file
and the full path specification i.e. C:\MYPROJECT\PROJECT1.HEX. The User
program #2 will get only the name of the linker output file PROJECT1 and as a
parameter -p the path specification to the project C:AMYPROJECT. You should
enclose the key sequence with quotes (“”) if you use folder names with special
characters, i.e. space, ~, #.

Specify a Separate Folder for Listing and Object Files
You can direct the output files of the tools to different folders:

m The Options for Target — Output dialog lets you Select a Folder for
Objects. When you use a separate folder for the object files of each project
target, pVision2 has still valid object files of the previous build process.
Even when you change your project target, a Build Target command will
just re-translate the modified files.

m The Options for Target — Listing dialog provides the same functionality for
all listing files with the Select Folder for List Files button.

64 Chapter 4. Creating Applications

Use a CPU that is not in the pVision2 Device Database

The puVision2 device database contains all 8051 standard products. However,
there are some custom devices and there will be future devices which are
currently not part of this database. If you need to work with an unlisted CPU
you have two alternatives:

m Select a device listed under the rubric Generic. The 8051 (all Variants)
device allows you to configure all tool parameters and therefore supports all
CPU variants. Specify the on-chip memory as External Memory in the
Options for Target — Target dialog.

= You may enter a new CPU into the uVision2 device database. Open the
dialog File — Device Database and select a CPU that comes close to the
device you want to use and modify the parameters. The CPU setting in the
Options box defines the basic the tool settings. The parameters are described
in the following table.

Parameter Specifies ...

IRAM (range) Address location of the on-chip IRAM.

XRAM (range) Address location of the on-chip XRAM.

IROM (range) Address range of the on-chip (flash) ROM. The start address must be 0.
CLOCK (val) Default CPU clock used when you select the device.

MODA2 Dual DPTR for Atmel device variants.

MODDP2 Dual DPTR for Dallas device variants.

MODP2 Dual DPTR for Philips and Temic device variants.

MOD517DP Multiple DPTR for Infineon C500 device variants.

MOD517AU Arithmetic Unit for Infineon C500 device variants.

Other Option variables specify CPU data books and pVision2 Debugging DLLs.
Leave this variables unchanged when adding a new device to the database.

Create a Library File

Select Create Library in the dialog Options for Target — Output. pVision2
will call the Library Manager instead of the Linker/Locater. Since the code in
the Library will be not linked and located, the entries in the L51 Locate and L51
Misc options page are ignored. Also the CPU and memory settings in the
Target page are not relevant. Select a CPU listed under the rubric Generic in
the device database, if you plan to use your code on different 8051 directives.

Getting Started and Creating Applications 65

Copy Tool Settings to a New Target

Select Copy all Settings from Current Target when you add a new target in
the Project — Targets, Groups, Files... dialog. Copy tool settings from an
existing target to the current target in following way:

1. Use Remove Target to delete the current target.

2. Select the target with the tool settings you want to copy with Set as Current
Target.

3. Add the again removed target with Copy all Settings from Current Target
enabled.

Locate Segments to Absolute Memory Locations

Sometimes, it is required to locate sections to specific memory addresses. In the
following example, the structure called alarm control should be located at
address 0xC000. This structure is defined in a source file named ALMCTRL.C

and this module contains only the declaration for this structure.

struct alarm st {
unsigned int alarm number;
unsigned char enable flag;
unsigned int time delay;
unsigned char status;

}:

struct alarm st xdata alarm control;

The C51 compiler generates an object file for ALMCTRL.C and includes a
segment for variables in the xdata memory area. The variable alarm control is
the located in the segment ?XD?ALMCTRL. pVision2 allows you to specify the
base address of any section under Options for Target — L51 Locate — Users
Sections. In the following example linker/locater will locate the section named
?XD?ALMCTRL at address 0xC000 in the physical xdata memory.

NOTE

C51 offers you also _at_ directive and absolute memory access macros to
address absolute memory locations. For more information refer to the “C51
User's Guide”, Chapter 6.

66 Chapter 4. Creating Applications

Options for Target 'Standard® [2]x]
Terget | Outout | Listing | c51 | A51 L81 Lacate | L81 Misc| Debug |
¥ Use Memory Layout from Target Dialog

Space Base Segments
Gl ||anunu |
wdlata: IUxUUUU I?XD?ALMCTRL(UxCUUU)
Pdata: I—
Frecede: I
Bit | [
Diata: I I
Idata: I I
Stack: I

Linker ITO "Project" i’

cantral \RAMSIZE(2EE)

string |CODE(Dx0000) =l

0K I Cancel Defaults

File and Group Specific Options — Properties Dialog

uVision2 allows you to set file and group specific options via the local menu in
the Project Window — Files page as follows: select a file or group, click with
the right mouse key and choose Options for Then you can review
information or set special options for the item selected. The dialog pages have
tri-state controls. If a selection is gray or contains <default> the setting from the
higher group or target level is active. The following table describes the options
of the Properties dialog page:

Dialog Item

Path, Type, Size
Last Change

Include in Target
Build

Always Build

Description ‘

Outputs information about the file selected.

Disable this option to exclude the group or source file in this target. If this
option is not set, pVision2 will not translate and not link the selected item
into the current targets. This is useful for configuration files, when you are
using the project file for several different hardware systems.

Enable this option to re-translate a source module with every build process,
regardless of madifications in the source file. This is useful when a file
contains _ DATE__ and __TIME__ macros that are used to stored version
information in the application program.

Generate Assembler
SRC File

Assemble SRC File

Instructs the C51 compiler to generate an assembler source file from this C
module. Typical this option is used when the C source file contains
#pragma asm / endasm sections.

Use this option together with the Generate Assembler SRC File to
translate the assembler source code generated by C166 into an object file
that can be linked to the application.

Getting Started and Creating Applications 67

Dialog Item Description ‘

Link Publics Only This option is only available with L251 and instructs the linker to include only
PUBLIC symbols from that module. Typical this option when you want to
use entry or variable addresses from a different application. It refers in the
most cases to an absolute object file which may be part of the project.

Stop on Exit Code Specify an exit code when the build process should be stop on translator
messages. By default, pVision2 translates all files in a build process
regardless of error or warning messages.

Select Modules to Allows you to always include specific modules from a Library. Refer to
Always Include “Include Always specific Library Modules” on page 77 for more information.

Custom Arguments This line is required if your project contains files that need a different
translator. Refer to “Use a Custom Translator” on page 78 for more
information.

Options for File *filel.c' [2]x]

Froperies | CR1 |

Path IH \Project] Yiilel o

Type IC source file

[7 Include in Target Build

Size |1?4 Biylas

v Abways Build
last change |Mnn Sep 20 14:46:25 1949

[¥ Generate Azsemhbler SRC F\\eﬁ
7 Assemhble SEC File

[Z Link Publics Only:

Code Bank: | -

Stop on Exit Code ITransIatDrWammgs (Exit Code >=1) j

Select Modules
to Alwass
Include

Custorm Argurnents

0K I Cancel | Defaults |

In this example we have specified for FILE1.C that the build process is stopped
when there are translator warnings and that this file is translated with each build
process regardless of modifications.

68

Chapter 4. Creating Applications

Translate a C Module with asm / endasm Sections

If you use within your C source module assembler statements, the C51 compiler
requires you to generate an assembler source file and translate this assembler
source file. In this case enable the options Generate Assembler SRC File and
Assembler SRC File in the properties dialog.

NOTE

Check if you can use build-in intrinsic functions to replace the assembler code.
In general it better to avoid assembler code sections since you C source code
will not be portable to other platforms. The C51 compiler offers you many
intrinsic functions that allow you to access all special peripherals. Typically it
is not required to insert assembler instructions into C source code.

Include Always specific Library Modules

The Properties dialog page allows you to specify library modules that should be
always included in a project. This is sometimes required when you generate a
boot portion of an application that should contain generic routines that are used
from program parts that are reloaded later. In this case add the library that
contains the desired object modules, open the Options — Properties dialog via
the local menu in the Project Window — Files and Select Modules to Always
Include.

[0 FLOATING_POINT_LIBRARY_32_BIT = Just enable the modules you
7 SMALL_MODEL_LIBRARY = . . .
Soloct Modulee |0 7C_FPGETOPN want to include in any case into

?C_FPADD

odlays |0, pguL

Include

your target application.

Getting Started and Creating Applications 69

Use a Custom Translator

If you add a file with unknown file extension to a project, pVision2 requires you
to specify the file type for this file. You may select Custom File and use a
custom translator to process this file. The custom translator is specified along
with its command line in the Custom Arguments line of the Options —
Properties dialog. Typical the custom translator will generate a source file from
the custom file. You need to add this source file to your project to and use A51
or C51 to generate an object file that can be linked to your application.

Options for File "custom.pre’ [2]x]

Froperies |

Path ID tempymeasure’custom.pre

Type |Custumh|e

[7 Include in Target Build

Bize |4 Bytes
I Al o
last change |Fn Jan 2213:37:13 1488
¥ | Eenerate Ascemhler SEEEE
¥ Azzemble SEC File
[Link Publics Only:
Stop on Exit Code: |Mot specified j

Select Modules
to Alwass
Include

Custom Arguments: |C:\Uiltiesy PRETRANS. exe custum.pre

0K I Cancel | Defaults |

In this example we have specified for CUSTOM.PRE that the program
C:\UTILITIES\PRETRANS.EXE is used with the parameter —X to translate the file.
Note that we have used also the Always Build option to ensure that the file is
translated with every build process.

70

Chapter 4. Creating Applications

File Extensions

The dialog Project — File Extensions allows you to set the default file extension
for a project. You can enter several extensions when you separate them with
semi-colon characters. The file extensions are project specific.

Different Compiler and Assembler Settings

Via the local menu in the Project Window — Files you may set different options
for a file group or even a single file. The dialog pages have tri-state controls; if
an option is grayed the setting from higher level is taken. You can specify with
this technique different tools for a complete file group and still change settings
on a single source file within this file group.

Version and Serial Number Information

Detailed tool chain information is listed when you open Help — About. Please
use this information whenever you send us problem reports.

Getting Started and Creating Applications 7

Chapter 5. Testing Programs

MVision2 Debugger

You can use uVision2 Debugger to test the applications you develop using the
C51 compiler and A51 macro assembler. The pVision2 Debugger offers two
operating modes that are selected in the Options for Target — Debug dialog:

Use Simulator allows to configure the uVision2 Debugger as software-only
product that simulates most features of the 8051 microcontroller family without
actually having target hardware. You can test and debug your embedded
application before the hardware is ready. pVision2 simulates a wide variety of
peripherals including the serial port, external I/O, and timers. The peripheral set
is selected when you select a CPU from the device database for your target.

Use Advance GDI drivers, like Keil Monitor 51 interface. With the Advanced
GDI interface you may connect the environment directly to emulators or the Keil
Monitor program. For more information refer to “Chapter 11. Using Monitor-

51” on page 175. E

CPU Simulation

uVision2 simulates up to 16 Mbytes of memory from which areas can be
mapped for read, write, or code execution access. The uVision2 simulator traps
and reports illegal memory accesses.

In addition to memory mapping, the simulator also provides support for the
integrated peripherals of the various 8051 derivatives. The on-chip peripherals
of the CPU you have selected are configured from the Device Database selection
you have made when you create your project target. Refer to page 48 for more
information about selecting a device.

You may select and display the on-chip peripheral components using the Debug
menu. You can also change the aspects of each peripheral using the controls in
the dialog boxes.

72

Chapter 5. Testing Programs

@] start Debugging

You start the debug mode of pVision2 with the Debug — Start/Stop Debug
Session command. Depending on the Options for Target — Debug
configuration, pVision2 will load the application program and run the startup
code. For information about the configuration of the pVision2 debugger refer to
page 88. uVision2 saves the editor screen layout and restores the screen layout
of the last debug session. If the program execution stops, pVision2 opens an
editor window with the source text or shows CPU instructions in the disassembly
window. The next executable statement is marked with a yellow arrow.

During debugging, most editor features are still available. For example, you can
use the find command or correct program errors. Program source text of your
application is shown in the same windows. The pVision2 debug mode differs
from the edit mode in the following aspects:

m The “Debug Menu and Debug Commands” described on page 19 are
available. The additional debug windows are discussed in the following.

m The project structure or tool parameters cannot be modified. All build
commands are disabled.

(= Disassembly Window

The Disassembly window shows your target program as mixed source and
assembly program or just assembly code. A trace history of previously executed
instructions may be displayed with Debug — View Trace Records. To enable
the trace history, set Debug — Enable/Disable Trace Recording.

Getting Started and Creating Applications 73

&, Disassembly =] E3
1026: JHP FAR main =
-4 0000019E FAOZE233 JMPS main(0x233E2) —
187: woid main [woild) A% main e
=3 000233E2 76E20004 OR P3,#0=0400

~% SET FORT 3.10 DIRECTION CONTE
DF3.#0:z0400

#% REZET PORET 3.11 DIEECTION COb
DF3.#0=zF7FF

<% JET TRANZEMIT INTEREUFT FLAG

195: DF3 |= 0z0400:

-2 000Z33ER 7RE30004 OR
196: DF3 &= 0OxF7FF:

=1l 000Z33EA GRE3ZFFFY AND
197: S0TIC = 0z80;

000Z33EE E6BRSO00 MOV
195: SORIC = 0z00;
000233F2 ERB70000 MOV
199: S0BG = 0=40;
000233F6 ER5A4000 MOV

SO0TIC,#0x0080

«* DELETE RECEIVE INTERRUFT FLAC
SORIC,#0z0000

<% ZET BAUDRATE TO 9600 BALD
S0BG, #0x0040

200: 20CON = 0x8011; ~* ZET 2ERIAL MODE
201: #endif

202:

203: <% setup the timer 0 interrupt *-

Q00233Fa EEDB1180 MOV
204: TOREL = PERIOD; 7% et reload wvalue *7
Q00233FE ERZ2A3CFA MOV TOREL, #0zF6e3C
N5 T = PERTON = b
4 v

SOCON, #0x8011

If you select the Disassembly Window as the active window all program step
commands work on CPU instruction level rather than program source lines. You
can select a text line and set or modify code breakpoints using toolbar buttons or
the context menu commands.

You may use the dialog Debug — Inline Assembly... to modify the CPU
instructions. That allows you to correct mistakes or to make temporary changes
to the target program you are debugging.

el Breakpoints

uVision2 lets you define breakpoints in several different ways. You may already
set Execution Breaks during editing of your source text, even before the
program code is translated. Breakpoints can be defined and modified in the
following ways:

m With the File Toolbar buttons. Just select the code line in the Editor or
Disassembly window and click on the breakpoint buttons.

m With the breakpoint commands in the local menu. The local menu opens
with a right mouse click on the code line in the Editor or Disassembly
window.

m The Debug — Breakpoints... dialog lets you review, define and modify
breakpoint settings. This dialog allows you to define also access breakpoints
with different attributes. Refer to the examples below.

74

Chapter 5. Testing Programs

m In the Output Window — Command page you can use the BreakSet,
BreakKill, BreakList, BreakEnable, and BreakDisable commands.

The Breakpoint dialog lets you view and modify breakpoints. You can quickly
disable or enable the breakpoints with a mouse click on the check box in the
Current Breakpoints list. A double click in the Current Breakpoints list
allows you to modify the selected break definition.

Breakpoints HE
Current Breakpoints:

00: (E) 0x000240d0. '\Measure}143",

01: (E) 0x00024170, 'main’,

[02: (E) 0x00023fea. 'timer0’. cmd: "printf (3" Timer0 Interrrupt occurediini™)”
03: (E) 0x00023f9e, 'save_measurements’. count=10,

[104: (C) 'mdisplay ==1".

™ 05: (A readwrite 0x000210AA len=48). '
06: (A write 0x0002300A len=2), 'sindex == 10",
07: (E) 0x0002432e. 'measure_display'. cmd: "MyStatus "

2l |]

Access—————————————————
Expression: Isave_record[1 0] ¥ Bead ¥ White

Count |1 3: Sire:
- m [~ Bytes
| = ¥ Ohjects

Bisiiine | ﬁiIISEIededl Kill Al |

Caommand:

You define a breakpoint by entering an Expression in the Breakpoint dialog.
Depending on the expression one of the following breakpoint types is defined:

m When the expression is a code address, an Execution Break (E) is defined
that becomes active when the specified code address is reached. The code
address must refer to the first byte of a CPU instruction.

m When a memory Access (Read, Write or both) is selected an Access Break
(A) is defined that becomes active when the specified memory access occurs.
You can specify the size of the memory access window in bytes or object size
of the expression. Expressions for an Access Break must reduce to a
memory address and memory type. The operators (&, &&, <. <=. >, >= ==,
and !=) can be used to compare the variable values before the Access Break
halts program execution or executes the Command.

m When the expression cannot be reduced to an address a Conditional Break

(C) is defined that becomes active when the specified conditional expression
becomes true. The conditional expression is recalculated after each CPU

Getting Started and Creating Applications 75

instruction, therefore the program execution speed may slow down
considerably.

When you specify a Command for a breakpoint, pVision2 executes the
command and resumes executing your target program. The command you
specify here may be a nVision2 debug or signal function. To halt program
execution in a uVision2 function, set the _break_ system variable. For more
information refer to “System Variables” on page 101.

The Count value specifies the number of times the breakpoint expression is true
before the breakpoint is triggered.
Breakpoint Examples:

The following description explains the definitions in the Breakpoint dialog
shown above. The Current Breakpoints list summarizes the breakpoint type
and the physical address along with the Expression, Command and Count.

Expression: \Measure\143

Execution Break (E) that halts when the target program reaches the code line
143 in the module MEASURE.

Expression: main

Execution Break (E) that halts when the target program reaches the main
function.

Expression: timer0 Command: printf ("Timer0 Interrupt occurred\n")

Execution Break (E) that prints the text "Timer(Interrupt occurred" in the
Output Window — Command page when the target program reaches the timer(
function. This breakpoint is disable in the above Breakpoint dialog.

Expression: save measurements Count: 10

Execution Break (E) that halts when the target program reaches the function
save_measurements the 10" time.

Expression: mcommand == 1

Contional Break (C) that halts program execution when the expression
mcommand == 1 becomes true. This breakpoint is disable in the above
Breakpoint dialog.

Expression: save record[10] Access: Read Write Size: 3 Objects

76 Chapter 5. Testing Programs

Access Break (A) that halts program execution when an read or write access
occurs to save_record[10] and the following 2 objects. Since save record is a
structure with size 16 bytes this break defines an access region of 48 bytes.

Expression: sindex == 10 Access: Write

Access Break (A) that halts program execution when the value 10 is written to
the variable sindex.

Expression: measure display Command: MyStatus ()

Execution Break (E) that executes the pVision2 debug function MyStatus when
the target program reaches the function measure_display. The target program
execution resumes after the debug function MyStatus has been executed.

Target Program Execution
uVision2 lets execute your application program in several different ways:

m With the Debug Toolbar buttons and the “Debug Menu and Debug
Commands” as described on page 19.

m With the Run till Cursor line command in the local menu. The local menu
opens with a right mouse click on the code line in the Editor or Disassembly
window.

m In the Output Window — Command page you can use the Go, Ostep, Pstep,
and Tstep commands.

4 Watch Window

The Watch window lets you view and modify program variables and lists the
current function call nesting. The contents of the Watch Window are
automatically updated whenever program execution stops. You can enable View
— Periodic Window Update to update variable values while a target program is
running.

Getting Started and Creating Applications

77

%! Marne | value |
e save_record(id] stuctmrec{..}

struct clock { .. }

0x0C
023
=00
0x0016

B stortilag
- Lanter hera®

A[ATETFI, Cocals) atch #1 £ Watch #2 3, Call Stack J

The Locals page shows all local function variables of the current function. The
Watch pages display user-specify program variables. You add variables in three
different ways:

m Seclect the text <enter here> with a mouse click and wait a second. Another
mouse click enters edit mode that allows you to add variables. In the same
way you can modify variable values.

m In an editor window open the context menu with a right mouse click and use
Add to Watch Window. pVision2 automatically selects the variable name
under the cursor position, alternatively you may mark an expression before
using that command.

m In the Output Window — Command page you can use the WatchSet
command to enter variable names.

To remove a variable, click on the line and press the Delete key.

The current function call nesting is shown in the Call Stack page. You can
double click on a line to show the invocation an editor window.

= cpu Registers

The CPU registers are displayed and Project Window — Regs page and can be
modified in the same way as variables in the Watch Window.

Memory Window

The Memory window displays the contents of the various memory areas. Up to
four different areas can be review in the different pages. The context menu
allows you to select the output format.

78 Chapter 5. Testing Programs

|- lx

[»

Address: |ptr->buf

0002300C: 0000 O00& 0301 0000 OOOO OOOO0 0000 0000
0002301C: 0000 0000 O0F - = oo "'E 0000 0000
0002302C: FDEC 40D4 0OC
0D002303C: BBCO BOF4
00023040 : 4472 00CA 3% Signed
0002305C: 145C 81E0 1O B
00023060 : 3912 O6ED F7 A8cl »
0002307C: 4480 00Cak 37 Float N 89C0 FRER

0D002308C: 4465 00CA 3% Double b DF3D FDFC

0002309C: 00CE 0628 OBET SUEZ UUUZ UIED 40C4 0004 o)

[A[AT TR Hemory #1 A Wemory #2 A Memory #2 3 Memary & f

ANt A oo

Char

In the Address field of the Memory Window, you can enter any expression that
evaluates to a start address of the area you want to display. To change the
memory contents, double click on a value. This opens an edit box that allows
you to enter new memory values. To update the memory window while a target
program is running enable View — Periodic Window Update.

AN Toolbox

The Toolbox contains user-configurable buttons. Click on a Toolbox button to
execute the associated command. Toolbox buttons may be executed at any time,
even while running the test program.

Toolbox buttons are define the Qutput Window
— Command page with the DEFINE BUTTON Update Windows

command. The general syntax is: Decimal Outpar

—_

>DEFINE BUTTON "button label", "command"
- Hex Dutput

button_label is the name to display on the button
in the Toolbox.

hy Status Info
™ Analogd 5V

command is the uVision2 command to
execute when the button is pressed.

Stop Analogl

[5.0 [U L R)

The following examples show the define commands used to create the buttons in
the Toolbox shown above:

>DEFINE BUTTON "Decimal Output", "radix=0x0A"

>DEFINE BUTTON "Hex Output", "radix=0x10"

S>DEFINE BUTTON "My Status Info", "MyStatus ()" /* call debug function */
>DEFINE BUTTON "Analog0..5V", "analog0 ()" /* call signal function */
S>DEFINE BUTTON "Show R15", "printf (\"R15=%04XH\\n\")"

Getting Started and Creating Applications 79

NOTE

The printf command defined in the last button definition shown above introduces
nested strings. The double quote (") and backslash (\) characters of the format
string must be escaped with | to avoid syntax errors.

You may remove a Toolbox button with the KILL BUTTON command and the
button number. For example:

>Kill Button 5 /* Remove Show R15 button */

NOTE

The Update Windows button in the Toolbox is created automatically and cannot
be removed. The Update Windows button updates several debug windows
during program execution.

&5 Set Debug Options
The dialog Options for Target - Debug configures the uVision2 debugger.

Options for Target 'Small Model' HE
Terget | Outout | Listing | 185 | A186 | L1685 Locate | L1688 Misc Debug |
i ' Use: IKBM honitar-166 Driver j Setings |
¥ Load Application at Startup ¥ Go fill main() W Load Application at Starup [~ Go fill mainf)
Initialization File: Initialization File:
\measure.ini Browse... I Browse... |
Restore Debug Session Settings———————————————— Festore Debug Session Settings
 Breakpoints ¥ Toolbox ¥ Breakpoints ¥ Toolbox
¥ \Watchpoints & PA v ‘watchpaints
W Memory Display I temory Display:
CPUDLL Parameter: Driver DLL: Parameter:
|51 BE.OLL | |S1 56.OLL |
Dialog OLL: Parameter: Dialog DLL: Parameter:
|D1 67.0LL |—p1 67CR ID]E?.DLL I-p]E?CR
OK I Cancel | Defaults |

The following table describes the options of the Debug dialog page:

Dialog Item Description

Use Simulator Select the pVision2 Simulator as Debug engine.

80 Chapter 5. Testing Programs

Dialog Item Description ‘

Use Keil Monitor-166 ~ Select the Advanced GDI driver to connect to your debug hardware. The
Driver Keil Monitor-166 Driver allows you to connect a target board with the Keil
Monitor. There are yVision2 emulator and OCDS drivers in preparation.

Settings Opens the configuration dialog of the selected Advanced GDI driver.
Other dialog options are available separately for the Simulator and Advanced GDI section.
Load Application at Enable this option to load your target application automatically when you

Startup start the pVision2 debugger.

Go till main () Start program execution till the main label when you start the debugger.

Initialization File Process the specified file as command input when starting a debug session.

Breakpoints Restore breakpoint settings from the previous debug session.

Toolbox Restore toolbox buttons from the previous debug session.

Watchpoints & PA Restore Watchpoint and Performance Analyzer settings from the previous
debug session.

Memory Display Restore the memory display settings from the previous debug session.

CPU DLL Configures the internal pVision2 debug DLLs. The settings are taken from

Driver DLL the device database. Please do not modify the DLL or DLL parameters.

Parameter

& Serial Window

pVision2 provides two Serial Windows for serial input and output. Serial data
output from the simulated CPU is displayed in this window. Characters you type
in the Serial Window are input to the simulated CPU.

= Serial #1 H=E

-

+*xxxxxxxxxx REMOTE MEASUREMENT RECORDEER using C166 *®xxxxxxxxs
This program is a simple Measurement Recorder. It 1s based |
on the 800166 CPU and records the state of Port 2 and the |
voltage on the four analog inputs ANO through AM3I. |

|
|
| :
+ command -+ syntax ----- + function -------------------—————-—- +
| Eead | B [n] | read <n» recorded measurements |
| Display | D | f;_agdimgde surement values |
| Time | T hhimm:ss |

Hex tode
| Interval | I mm:ss.ttt |
| Clear | | ClearWindow ecords
| Quit | 2 | gUIt megsulemenr Iecording |
| Btart | 2 | start measurement recording |
+-————— - o e +
Command :
Kl 2

This lets you simulate the CPU’s UART without the need for external hardware.
The serial output may be also assigned to a PC COM port using the ASSIGN
command in the Output Window — Command page.

Getting Started and Creating Applications 81

The puVision2 Performance Analyzer displays the execution time recorded for
functions and address ranges you specify.

= Performance Analyzer I9[=] E3

0% 10 20 30 40 50 &GO 70 B8O 80 100% —
L |

<unspecified>

o

timerd: W

- BesetPA
main: I v Activate PA
\measure\97. \measure\103: | VgpdateTimes
clear_records:
getline: G
=
mintime: maxtime: awgtime: totaltime: % count:

|n.unnnnn |u.13050? |u.1304?a |u.250955 5.8 | 2

The <unspecified> address range is automatically generated. It shows the
amount of time spent executing code that is not included in the specified
functions or address ranges.

Results display as bar graphs. Information such as invocation count, minimum
time, maximum time, and average time is displayed for the selected function or
address range. Each of these statistics is described in the following table.

Label Description

min time The minimum time spent in the selected address range or function.

max time The maximum time spent in the selected address range or function.

avg time The average time spent in the selected address range or function.

total time The total time spent in the selected address range or function.

% The percent of the total time spent in the selected address range or function.

count The total number of times the selected address range or function was
executed.

To setup the Performance Analyzer use the menu command Debug —
Performance Analyzer. You may enter the PA command in the command
window to setup ranges or print results.

W Code Coverage

The uVision2 debugger provides a code coverage function that marks the code
that has been executed. In the debug window, lines of code that have been
executed are market green in the left column. You can use this feature when you

82 Chapter 5. Testing Programs

test your embedded application to determine the sections of code that have not
yet been exercised.

Code Caverage 2ld The Code Coverage dialog
Current bModule: |[SEINSIETEE pI‘OVideS inforrnation and
statistics. You can output

this information in the

Modules/Functions | Execution percentage
= Meommand

[measure_display 100% of 43 instructions
- gef_time 0% of 45 instructions

[

- get_interal 0% of 87 instructions Output Window —
‘bMeasure .
-~ gave_measurements 100% of 24 instructions Command page uSlng the

timerl 6% of 76 instructions
read_index 46% of 45 instructions COVERAGE Command.
clear_records 100% of 11 instructions

- main 61% of 147 instructions
= Getline

Lo pfling 24% nf 4% instructinns [

The Memory Map dialog box lets you specify the memory areas your target
program uses for data storage and program execution. You may also configure
the target program’s memory map using the MAP command.

When you load a target application, pVision2 automatically maps all address
ranges of your application. Typically it is not required to map additional address
ranges. You need to map only memory areas that are accessed without explicit
variable declarations, i.e. memory mapped I/O space.

The dialog opens via the menu Memory Map
Current Mapped Ranges:
Debug Memory Map' o 001: Dx00000000 - x00000083 exac read write -

002: 0x00000084 - 0x000001AT exec read
003: Dx00000TAZ - DxN0003FFF exec read write

004: 0x00004000 - 0x00004434 read write
As your target program runs,
7. (05: 0x00004495 - 0x00004495 exec read wite
},LVISIOHZ uses the memory map to 00B: 0x00004436 - 0000046 TF read wiite
. 007: 0x00004520 - 0x0000FFFF exac raad wite -
Verlfy that your program does not MNR: (N0 RN - NN RNNT rand writa
access invalid memory areas. For [onzstosrans

— Map Range - Example: 0x40000, Dx4FFFF

each memory range, you may
specify the access method: Read,

. . . I Bead
Write, Execute, or a combination. e

I ‘Wirite

I™ Execute lEm Bange

Getting Started and Creating Applications 83

View — Symbols Window

The Symbols Window displays public symbols, local symbols or line number
information defined in the currently loaded application program. CPU-specific
SFR symbols are also displayed.

Symbols (2]]
hode: Current Module: hashk:
IMCDmmand j I* Apply |

Addrass | MName | Type |;

<MODULE> teommancd

O=00023118 set_interval nearfunction

O=0002309E zet_time nearfunction

Ox0002302C measure_display rear function

<FUMNCTION» measure_display

[RO+#0] display struct mrec

F13 i uint

<FUMNCTION> get_time

Ra buffer near paintar

RE args int

[RO+#0] time struct clock

<FUMCTION> set_intersal |-

Ra buffer near paintar

[RO+#4] second float =

r1a Py Pt

You may select the symbol type and filter the information with the options in the
Symbol Window:

Options Description
Mode select PUBLIC, LOCALS or LINE. Public symbols have application-wide
scope. The scope of local symboals is limited to a module or function. Lines
refer to the line number information of the source text.
Current Module select the source module where information should be displayed.
Mask specify a mask that is used to match symbol names. The mask may consist
of alphanumeric characters plus mask characters:
matches a digit (0 — 9)
$ matches any character
* matches zero or more characters.
Apply applies the mask and displays the update symbol list.

The following table provides a few examples of masks for symbol name.

Matches symbol names ...

* Matches any symbol. This is the default mask in the Symbol Browser.
H* ... that contain one digit in any position.
_a$#* ... with an underline, followed by the letter a, followed by any character, followed by a

digit, ending with zero or more characters. For example, _ab1 or _a10value.

84 Chapter 5. Testing Programs

Mask Matches symbol names ...

*ABC ... with an underline, followed by zero or more characters, followed by ABC.

Debug Commands

You may interact with the uVision2 debugger by entering commands in the
Output Window — Command page. In the following tables all available
uVision2 debug commands are listed in categories. Use the underlined
characters in the command names to enter commands. For example, the
WATCHSET command must be entered as WS.

During command entry, the syntax generator displays possible commands,
options and parameters. As you enter commands pVision2 reduces the list of
likely commands to coincide with the characters you type.

If you type B, the syntax iE
BreakDisable BreakEnable BreakKill Breaklist BreakSet

generator reduces the commands [T s, commana 4 Fim Fies

listed.

Available command options are B

. . . READ WRITE READWRITE <break expression?>

listed if the command is clear. 4[4[[, Buid_}, command /_Find in Files

The SyntaX generator leads you »BS WRITE saverscords[0], 1, "_break_ = 1"
"{oommand> " <ord

through the command entry and T B, Commana £ Fram Fies

helps you to avoid errors.

Memory Commands

The following memory commands let you display and alter memory contents.

Command Description ‘
ASM Assembles in-line code.

DEFINE Defines typed symbols that you may use with pVision2 debug functions.
DISPLAY Display the contents of memory.

ENTER Enters values into a specified memory area.

EVALUATE Evaluates an expression and outputs the results.

MAP Specifies access parameters for memory areas.

UNASSEMBLE Disassembles program memory.

WATCHSET Adds a watch variable to the Watch window.

Getting Started and Creating Applications 85

Program Execution Commands

Program commands let you run code and step through your program one
instruction at a time.

Command Description

Esc Stops program execution.

GO Starts program execution.

PSTEP Steps over instructions but does not step into procedures or functions.
OSTEP Steps out of the current function.

TSTEP Steps over instructions and into functions.

Breakpoint Commands

uVision2 provides breakpoints you may use to conditionally halt the execution
of your target program. Breakpoints can be set on read operations, write
operations and execution operations.

Command Description

BREAKDISABLE Disables one or more breakpoints.

BREAKENABLE Enables one or more breakpoints.

BREAKKILL Removes one or more breakpoints from the breakpoint list.
BREAKLIST Lists the current breakpoints.

BREAKSET Adds a breakpoint expression to the list of breakpoints.

General Commands

The following general commands do not belong in any other particular command
group. They are included to make debugging easier and more convenient.

Command Description ‘

ASSIGN Assigns input and output sources for the Serial window.

COVERAGE List code coverage statistics.

DEFINE BUTTON Creates a Toolbox button.

DIR Generates a directory of symbol names.

EXIT Exits the pVision2 debug mode.

INCLUDE Reads and executes the commands in a command file.

KILL Deletes pVision2 debug functions and Toolbox buttons.

LOAD Loads CPU drivers, object modules, and HEX files.

LOG Creates log files, queries log status, and closes log files for the Debug
window.

86 Chapter 5. Testing Programs

Command Description ‘

MODE Sets the baud rate, parity, and number of stop bits for PC COM ports.

PerformanceAnalyze Setup the performance analyzer or list PA information.

RESET Resets CPU, memory map assignments, Performance Analyzer or
predefined variables.

SAVE Saves a memory range in an Intel HEX386 file.

SCOPE Displays address assignments of modules and functions of a target
program.

SET Sets the string value for predefined variable.

SETMODULE Assigns a source file to a module.

SIGNAL Displays signal function status and removes active signal functions.

SLOG Creates log files, queries log status, and closes log files for the Serial
window.

You can interactively display and change variables, registers, and memory
locations from the command window. For example, you can type the following
text commands at the command prompt:

MDH Display the MDH register.

R7 =12 Assign the value 12 to register R7.

time.hour Displays the member hour of the time structure.
time.hour++ Increments the member hour of the time structure.
index =0 Assigns the value 0 to index.
Expressions

Many debug commands accept numeric expressions as parameters. A numeric
expression is a number or a complex expressions that contains numbers, debug
objects, or operands. An expression may consist of any of the following

components.

Component Description ‘

Bit Addresses Bit addresses reference bit-addressable data memory.

Constants Constants are fixed numeric values or character strings.

Line Numbers Line numbers reference code addresses of executable programs. When
you compile or assemble a program, the compiler and assembler
include line number information in the generated object module.

Operators Operators include +, -, *, and /. Operators may be used to combine
subexpressions into a single expression. You may use all operators that
are available in the C programming language.

Program Variables Program variables are those variables in your target program. They are

(Symbols) often called symbols or symbolic names.

Getting Started and Creating Applications 87

Component Description
System Variables System variables alter or affect the way pVision2 operates.
Type Specifications Type specifications let you specify the data type of an expression or

subexpression.

Constants

The pVision2 accepts decimal constants, HEX constants, octal constants, binary
constants, floating-point constants, character constants, and string constants.

Binary, Decimal, HEX, and Octal Constants

By default, numeric constants are decimal or base ten numbers. When you enter
10, this is the number ten and not the HEX value 10n. The following table shows
the prefixes and suffixes that are required to enter constants in base 2 (binary),
base 8 (octal), base 10 (decimal), and base 16 (HEX).

Example

Binary: None Yory 11111111Y

Decimal: None T or none 1234T or 1234
Hexadecimal: 0x or 0X Horh 1234H or 0x1234
Octal: None Q, q,0,0ro 777q or 777Q or 7770

Following are a few points to note about numeric constants.
= Numbers may be grouped with the dollar sign character (“$”’) to make them
easier to read. For example, 111181111y is the same as 11111111y,

= HEX constants must begin prefixed with a leading zero when the first digit in
the constant is A-F.

= By default, numeric constants are 16-bit values. They may be followed with
an . to make them long, 32-bit values. For example: o0x1234r, 12341, 1255HL.

= When a number is entered that is larger than the range of a 16-bit integer , the
number is promoted automatically to a 32-bit integer.

88

Chapter 5. Testing Programs

Floating-Point Constants

Floating-point constants are entered in one of the following formats.

number . number

number e[+|—] number

number . number [e[ﬂ-] number]

For example, 4.12, 0.1e3, and 12.12e-5. In contrast with the C programming
language, floating-point numbers must have a digit before the decimal point. For
example, .12 is not allowed. It must be entered as 0.12.

Character Constants

The rules of the C programming language for character constants apply to the
uVision2 debugger. For example, the following are all valid character constants.

'a', '1', '\n', '\v', '"\xO0FE', '\015'

Also escape sequences are supported as listed in the following table:

Sequence Description Sequence Description

\\ Backslash character (“\”). \n Newline.

\" Double quote. \r Carriage return.
\' Single quote. \t Tab.

\a Alert, bell. \Onn Octal constant.
\b Backspace. \Xnnn HEX constant.
\f Form feed.

String Constants

The rules of the C programming language for string constants also apply to
uVision2. For example:

"string\x007\n" "value of %s = %04XH\n"

Nested strings may be required in some cases. For example, double quotes for a
nested string must be escaped. For example:

"printf (\"hello world!\n\")"

Getting Started and Creating Applications 89

In contrast with the C programming language, successive strings are not
concatenated into a single string. For example, "stringl+" "string2" is not
combined into a single string.

System Variables

System variables allow access to specific functions and may be used anywhere a
program variable or other expression is used. The following table lists the
available system variables, the data types, and their uses.

Variable Type Description ‘
$ unsigned long represents the program counter. You may use $ to display and
change the program counter. For example,
$ = 0x4000

sets the program counter to address 0x4000.

break unsigned int lets you stop executing the target program. When you set _break_
to a non-zero value, pVision2 halts target program execution. You
may use this variable in user and signal functions to halt program
execution. Refer to “Chapter 6. pVision2 Debug Functions” on page
119 for more information.

traps unsigned int when you set _traps_ to a non-zero value, pVision2 display
messages for the 166 hardware traps: Undefined Opcode,
Protected Instruction Fault, lllegal Word Operand Access, lllegal
Instruction Access, Stack Underflow and Stack Overflow.

states unsigned long current value of the CPU instruction state counter; starts counting
from O when your target program begins execution and increases for
each instruction that is executed.
NOTE: states is a read-only variable.

itrace unsigned int indicates whether or not trace recording is performed during target
program execution. When itrace is 0, no trace recording is
performed. When itrace has a non-zero value, trace information is
recorded. Refer to page 82 for more information.

radix unsigned int determines the base used for numeric values displayed. radix may
be 10 or 16. The default setting is 16 for HEX output.

On-chip Peripheral Symbols

uVision2 automatically defines a number of symbols depending on the CPU you
have selected for your project. There are two types of symbols that are defined:
special function registers (SFRs) and CPU pin registers (VTREGS).

Special Function Registers (SFRs)

uVision2 supports all special function registers of the microcontroller you have
selected. Special function registers have an associated address and may be used
in expressions.

90

Chapter 5. Testing Programs

CPU Pin Registers (VTREGS)

CPU pin registers, or VTREGs, let you use the CPU’s simulated pins for input
and output. VTREGs are not public symbols nor do they reside in a memory
space of the CPU. They may be used in expressions, but their values and
utilization are CPU dependent. VTREGs provide a way to specify signals
coming into the CPU from a simulated piece of hardware. You can list these
symbols with the DIR VTREG command.

The following table describes the VTREG symbols. The VTREG symbols that
are actually available depend on the selected CPU.

VTREG Description ‘

AINx An analog input pin on the chip. Your target program may read values you write to
AINx VTREGS.

PORTx A group of I/O pins for a port on the chip. For example, PORT2 refers to all 8 or 16
pins of P2. These registers allow you to simulate port 1/0.

SxIN The input buffer of serial interface x. You may write 8-bit or 9-bit values to SxIN.
These are read by your target program. You may read SxIN to determine when the
input buffer is ready for another character. The value OxFFFF signals that the previous
value is completely processed and a new value may be written.

SxOUT The output buffer of serial interface x. pVision2 copies 8-bit or 9-bit values (as
programmed) to the SxOUT VTREG.

SxTIME Defines the baudrate timing of the serial interface x. When SxTIME is 1, pVision2
simulates the timing of the serial interface using the programmed baudrate. When

SxTIME is O (the default value), the programmed baudrate timing is ignored and serial
transmission time is instantaneous.

XTAL The XTAL frequency of the simulated CPU as defined in the Options — Target dialog.

NOTE

You may use the VTREGsS to simulate external input and output including
interfacing to internal peripherals like interrupts and timers. For example, if
you toggle bit 2 of PORT3 (on the 8051 drivers), the CPU driver simulates
external interrupt 0.

For the C517 CPU the following VTREG symbols for the on-chip peripheral
registers are available:

CPU-pin Symbol Description

AINO Analog input line AINO (floating-point value)
AIN1 Analog input line AIN1 (floating-point value)
AIN2 Analog input line AIN2 (floating-point value)

AIN3 Analog input line AIN3 (floating-point value)

Getting Started and Creating Applications 91

CPU-pin Symbol Description ‘
AIN4 Analog input line AIN4 (floating-point value)

AIN5 Analog input line AIN5 (floating-point value)

AIN6 Analog input line AING6 (floating-point value)

AIN7 Analog input line AIN7 (floating-point value)

AIN8 Analog input line AIN8 (floating-point value)

AIN9 Analog input line AIN9 (floating-point value)

AIN10 Analog input line AIN10 (floating-point value)

AIN11 Analog input line AIN11 (floating-point value)

PORTO Digital 1/0 lines of PORT 0 (8-bit)

PORT1 Digital 1/0 lines of PORT 1 (8-bit)

PORT2 Digital 1/0 lines of PORT 2 (8-bit)

PORT3 Digital 1/0 lines of PORT 3 (8-bit)

PORT4 Digital I/0 lines of PORT 4 (8-bit)

PORT5 Digital 1/0 lines of PORT 5 (8-bit)

PORT6 Digital I/O lines of PORT 6 (8-bit)

PORT7 Digital 1/0 lines of PORT 7 (8-bit)

PORTS8 Digital 1/0 lines of PORT 8 (8-bit)

SOIN Serial input for SERIAL CHANNEL 0 (9-bit)

SO0OUT Serial output for SERIAL CHANNEL 0 (9-bit)

S1IN Serial input for SERIAL CHANNEL 1 (9-bit)

S10UT Serial output for SERIAL CHANNEL 1 (9-bit)

STIME Serial timing enable

VAGND Analog reference voltage VAGND (floating-point value)
VAREF Analog reference voltage VAREF (floating-point value)
XTAL Oscillator frequency

The following examples show how VTREGs may be used to aid in simulating
your target program. In most cases, you use VTREGsS in signal functions to
simulate some part of your target hardware.

I/0 Ports

uVision2 defines a VTREG for each I/O port: i.e. PORT2. Do not confuse
these VTREGs with the SFRs for each port (i.e. P2). The SFRs can be accessed
inside the CPU memory space. The VTREGs are the signals present on the pins.

With pVision2, it is easy to simulate input from external hardware. If you have

a pulse train coming into a port pin, you can use a signal function to simulate the
signal. For example, the following signal function inputs a square wave on P2.1
with a frequency of 1000Hz.

92

Chapter 5. Testing Programs

signal void one thou hz (void) {

while (1) { /* repeat forever */
PORT2 |= 1; /* set P1.2 */
twatch ((CLOCK / 2) / 2000); /* delay for .0005 secs */
PORT2 &= ~1; /* clear P1.2 */
twatch ((CLOCK / 2) / 2000); /* delay for .0005 secs */

/* repeat */

}

The following command starts this signal function:

one_thou hz ()

Refer to “Chapter 6. pVision2 Debug Functions” on page 119 for more
information about user and signal functions.

Simulating external hardware that responds to output from a port pin is only
slightly more difficult. Two steps are required. First, write a pVision2 user or
signal function to perform the desired operations. Second, create a breakpoint
that invokes the user function.

Suppose you use an output pin (P2.0) to enable or disable an LED. The
following signal function uses the PORT2 VTREG to check the output from the
CPU and display a message in the Command window.

signal void check p20 (void) ({

if (PORT2 & 1)) { /* Test P2.0 */
printf ("LED is ON\n"); } /* 1? LED is ON */
else { /* 0? LED is OFF */

printf ("LED is OFF\n"): }

}

Now, you must add a breakpoint for writes to port 1. The following command
line adds a breakpoint for all writes to PORT?2.

BS WRITE PORT2, 1, "check p20 ()"

Now, whenever your target program writes to PORT2, the check P20 function
prints the current status of the LED. Refer to page 83 for more information
about setting breakpoints.

Serial Ports

The on-chip serial port is controlled with: SOTIME, SOIN, and SOOUT. SOIN
and SOOUT represent the serial input and output streams on the CPU. SOTIME
lets you specify whether the serial port timing instantaneous (STIME = 0) or the
serial port timing is relative to the specified baudrate (SXTIME = 1). When
SOTIME is 1, serial data displayed in the Serial window is output at the

Getting Started and Creating Applications

93

specified baudrate. When SOTIME is 0, serial data is displayed in the Serial

window much more quickly.

Simulating serial input is just as easy as simulating digital input. Suppose you
have an external serial device that inputs specific data periodically (every
second). You can create a signal function that feeds the data into the CPU’s

serial port.

signal void serial input (void) {

while (1) { /e
twatch (CLOCK) ; /*
SOIN = 'A'; /*
twatch (CLOCK / 900); /*

/*
SO0IN = 'B'; /*
twatch (CLOCK / 900);
SOIN = 'C'; /*

} /*

3

repeat forever */
Delay for 1 second */

Send first character */
Delay for 1 character time */
900 is good for 9600 baud */
Send next character */

Send final character */
repeat */

When this signal function runs, it delays for 1 second, inputs ‘A’, ‘B’, and ‘C’

into the serial input line and repeats.

Serial output is simulated in a similar fashion using a user or signal function and

a write access breakpoint as described above.

94 Chapter 5. Testing Programs

Program Variables (Symbols)

pVision2 lets you access variables, or symbols, in your target program by simply
typing their name. Variable names, or symbol names, represent numeric values
and addresses. Symbols make the debugging process easier by allowing you to
use the same names in the debugger as you use in your program.

When you load a target program module and the symbol information is loaded
into the debugger. The symbols include local variables (declared within
functions), the function names, and the line number information. You must
enable Options for Target — Output — Debug Information. Without debug
information, uVision2 cannot perform source-level and symbolic debugging.

Module Names

A module name is the name of an object module that makes up all or part of a
target program. Source-level debugging information as well as symbolic
information is stored in each module.

The module name is derived from the name of the source file. If the target
program consists of a source file named MCOMMAND.C and the C compiler
generates an object file called MCOMMAND.OBJ, the module name is
MCOMMAND.

Symbol Naming Conventions

The following conventions apply to symbols.

= The case of symbols is ignored: SYMBOL is equivalent to Symbol.

» The first character of a symbol name must be: ‘A’-’Z’, ‘a’-’z’, ¢ ’, or ?°.
= Subsequent characters may be: ‘A’-’Z’, ‘a’-’z’, ‘0°-’9’, ¢ ’, or ‘?’.
NOTE

When using the ternary operator (“?:”) in uVision2 with a symbol that begins
with a question mark (“?”), you must insert a space between the ternary
operator and the symbol name. For example, R5 = R6 ? ?symbol : R7.

Getting Started and Creating Applications 95

Fully Qualified Symbols

Symbols may be entered using a fully qualified name that includes the name of
the module and name of the function in which the symbol is defined. A fully
qualified symbol name is composed of the following components:

s Module Name identifies the module where a symbol is defined.

= Line Number identifies the address of the code generated for a particular
line in the module.

= Function Name identifies the function in a module where a local symbol is
defined.

= Symbol Name identifies the name of the symbol.

This components may combined as shown in the following table:

Symbol Components Full Qualified Symbol Name addresses ...
\ModuleName\LineNumber ... line number LineNumber in ModuleName.
\ModuleName\FunctionName ... FunctionName function in ModuleName.
\ModuleName\SymbolName ... global symbol SymbolName in ModuleName.
\ModuleName\FunctionName\SymbolName ... local symbol SymbolName in the

FunctionName function in ModuleName.

Examples of fully qualified symbol names:

Full Qualified Symbol Name Identifies ...

\MEASURE\clear_records\idx ... local symbol idx in the clear_records function in the
MEASURE module.

\MEASURE\MAIN\cmdbuf ... cmdbuf local symbol in the MAIN function in the
MEASURE module.

\MEASURE!\sindx ... sindex symbol in the MEASURE module.

\MEASURE\225 ... line number 225 in the MEASURE module.

\MCOMMAND\82 ... line number 82 in the MCOMMAND module.

\MEASURE\TIMERO . the TIMERO symbol in the MEASURE module. This
symbol may be a function or a global variable.

Non-Qualified Symbols

Symbols may be entered using the only name of the variable or function they
reference. These symbols are not fully qualified and searched in a number of
tables until a matching symbol name is found. This search works as follows:

1. Register Symbols of the CPU: RO —R15, RLO - RH7, DPPO — DPP3.

96

Chapter 5. Testing Programs

2. Local Variables in the Current Function in the target program. The
current function is determined by the value of the program counter.

3. Static Variables in the Current Module. As with the current function, the
current module is determined by the value of the program counter. Symbols
in the current module represent variables that were declared in the module but
outside a function.

4. Global or Public Symbols of your target program. SFR symbols defined by
uVision2 are considered to be public symbols and are also searched.

5. Symbols Created with the pVision2 DEFINE Command. These symbols
are used for debugging and are not a part of the target program.

6. System Variables that monitor and change debugger characteristics. They
are not a part of the target program. Refer to “System Variables” on page 101
for more information.

7. CPU Driver Symbols (VTREGsS) defined by the CPU driver. Refer to “CPU
Pin Registers (VTREGs)” on page 102 for a description of VTREG symbols.

NOTES

The search order for symbols changes when creating user or signal functions.
uVision?2 first searches the table of symbols defined in the user or signal
function. Then, the above list is searched. Refer to “Chapter 6. uVision2
Debug Functions” on page 119 for more information about user and signal

functions.

A literal symbol that is preceded with a back quote character (°) modifies the
search order: CPU driver symbols (VTREGS) are searched instead of CPU
register symbols.

Literal Symbols

With the back quote character (') you get a literal symbol name. Literal symbols
must be used to access:

= aprogram variable or symbol which is identical with a predefined Reserved
Word. Reserved Words are pVision2 debug commands & options, data
type names, CPU register names and assembler mnemonics.

= a CPU driver symbol (VTREG) that is identical to program variable name.

If a literal symbol name is given, uVision2 changes the search order for non-
qualified symbols that is described above. For a literal symbol CPU Driver
Symbols (VTREGS) are searched instead of CPU Register Symbols.

Getting Started and Creating Applications 97

Examples for using Literal Symbols

If you define a variable named R5 in your program and you attempt to access it,
you will actually access the RS CPU register. To access the RS variable, you
must prefix the variable name with the back quote character.

Accessing the R5 Register Accessing the R5 Variable

>R5 = 121 >"R5 = 212

If your program contains a function named clock and you attempt to clock
VTREG, you will get the address of the clock function. To access the clock
VTREG, you must prefix the variable name with the back quote character.

Accessing the clock function Accessing the clock VTREG
>clock >"clock
0x00000DB2 20000000

Line Numbers

Line numbers enable source-level debugging and are produced by the compiler
or assembler. The line number specifies the physical address in the source
module of the associated program code. Since a line number represents a code
address, uVision2 lets you use in an expression. The syntax for a line number is
shown in the following table.

Line Number Symbol Code Address ...

\LineNumber ... for line number LineNumber in the current module.
\ModuleName\LineNumber ... for line number LineNumber in ModuleName.
Example
\measure\108 /* Line 108 in module "MEASURE" */
\143 /* Line 143 in the current module */
Bit Addresses

Bit addresses represent bits in the memory. This includes bits in special function
registers. The syntax for a bit address is expression . bit_position

Examples

R6.2 /* Bit 2 of register R6 */
0xFD00.15 /* Value of the 166 bit space */

98 Chapter 5. Testing Programs

Type Specifications

puVision2 automatically performs implicit type casting in an expression. You
may explicitly cast expressions to specific data types. Type casting follows the
conventions used in the C programming language. Example:

(unsigned int) 31.2 /* gives unsigned int 31 from the float value */

Operators

pVision2 supports all operators of the C programming language. The operators
have the same meaning as their C equivalents.

Differences Between pVision2 and C

There are a number of differences between expressions in pVision2 and
expressions in the C programming language:

= pVision2 does not differentiate between uppercase and lowercase characters
for symbolic names and command names.

= pVision2 does not support converting an expression to a typed pointer like
char * or int *. Pointer types are obtained from the symbol information in
the target program. They cannot be created.

= Function calls entered in the pVision2 Output Window — Command page
refer to debug functions. You cannot invoke functions in your target from the
command line. Refer to “Chapter 6. pVision2 Debug Functions” on page
119 for more information.

= uVision2 does not support structure assignments.

Expression Examples

The following expressions were entered in the Command page of the Output
Window. All applicable output is included with each example. The MEASURE
example program were used for all examples.

Getting Started and Creating Applications 99

Constant

>0x1234 /* Simple constant */
0x1234 /* Output */
>EVAL 0x1234

4660T 11064Q 1234H '...4' /* Output in several number bases */
Register

>R1 /* Interrogate value of register R1 */
0x000A /* Address from ACC = 0xEO, mem type = D: */
>R1 = --R7 /* Set Rl and R7 equal to value R7-1 */

Function Symbol

>main /* Get address of main() from MEASURE.C */
0x00233DA /* Reply, main starts at 0x233DA */
>&main /* Same as before */
0x00233DA

>d main /* Display: address = main */
0x0233DA: 76 E2 00 04 76 E3 00 04 - 66 E3 FF F7 E6 B6 80 00 v...v...f......
0x0233EA: E6 B7 00 00 E6 5A 40 00 - E6 D8 11 80 E6 2A 3C F6 Z@...... *<
0x0233FA: E6 28 3C F6 E6 CE 44 00 - BF 88 E6 A8 40 00 BB D8 .(<...D..... Q..

0x02340A: E6 F8 7A 40 CA 00 CE 39 - E6 F8 18 44 CA 00 CE 39 ..z@...9...D...

Address Utilization Examples

>&\measure\main\cmdbuf [0] + 10 /* Address calculation */
0x23026
> RBYTE (0x233DA) /* Read byte from code address 0x233DA */
0x76 /* Reply */
Symbol Output Examples
>dir \measure\main /* Output symbols from main() in module MEASURE */
R14 idx . . . uint /* Output */
R13 i . . . uint
0x0002301C cmdbuf . . . array[15] of char

Program Counter Examples

>$ = main /* Set program counter to main() */
>dir /* points to local mem sym. from main() */
R14 idx . . . uint /* Output */
R13 i . . . uint
0x0002301C cmdbuf . . . array[15] of char

Program Variable Examples

>cmdbu f /* Interrogate address from cmdbuf */
0x0002301C /* Output of address due to aggregate type (Array)*/
>cmdbuf [0] /* Output contents of first array element */
0x00
>i /* Output contents from i */
0x00

>idx /* Output contents from idx */

100 Chapter 5. Testing Programs

0x0000
>idx = DPP2 /* Set contents from index equal to register DPP2 */
>idx /* Output contents from idx */
0x0008

Line Number Examples

>\163 /* Address of the line number #104 */
0x000230DA /* Reply */
>\MCOMMAND\ 91 /* A line number of module "MCOMMAND" */
0x000231F6

Operator Examples

>--R5 /* Auto-decrement also for CPU registers */
O0xXFE

>mdisplay /* Output a PUBLIC bit variable */
0

>mdisplay = 1 /* Change */
>mdisplay /* Check result */
1

Structure Examples

>save_record[0] /* Address of a record */
0x002100A

>save_record[0].time.hour = DPP3 /* Change struct element of records */
>save record[0].time.hour /* Interrogation */
0x03

pVision2 Debug Function Invocation Examples

>printf ("uVision2 is coming!\n") /* String constant within printf() */
uVision2 is coming! /* Output */
> WBYTE (0x20000, _RBYTE (0x20001)) /* Read & Write Memory Byte */
> /* example useful in debug functions */
>interval.min = getint ("enter integer: ");

Fully Qualified Symbol Examples

>--\measure\main\idx /* Auto INC/DEC valid for qualified symbol */
OxFFFF

Tips and Tricks

The following section discusses advanced techniques that you may use with the
uVision2 debugger. You will not need the following features very often, but
readers of this section get a better feeling for the pVision2 debugger capabilities.

Getting Started and Creating Applications 101

Simulate 1/0 Ports

uVision2 provides dialogs that show the
status of all I/O ports. The I/O Pins are =it S = Hite ;
represented with VTREGs. You may use this PI|IFF MV W
VTREGs also together with signal functions Eins: [E6 (FFFF-FRI-

or breakpoints as shown in the following
example program.

// in your C user program
plvalue = P1; // read Port 1 input
P3 = plvalue; // write to Port 3

Breakpoints that you define in the pVision2 simulator:

bs write PORT3, 1, "printf (\"Port3 value=%X\\n\", PORT3)"
bs read PORT1, 1, "PORT1l = getint (\"Input Portl value\")"

When you execute your C program, pVision2
asks you for a Portl input value. If a new [i234

output value is written to Port3, a message is
printed in the Qutput Window - Command
page. Refer also to “CPU Pin Registers (VTREGs)” on page 102.

Simulate Interrupts and Clock Inputs

pVision2 simulates the behavior of the I/O inputs.
If an I/O pin is configured as counter input the Mode
count value increments when the pin toggles. The SRR
following example shows how to simulate input Jether Transiion at T3IN |
for Counter 3: —Direction
// in your C user program [T T3UDE [T TIELUD [~ T3UD
T3CON = 0x004B; // set T3 Counter Mode Direction: [Up
Output

You may toggle the counter input P3.6 with the ([T30TL [Ta0E [T30uT ‘
VTREG PORTS3, i.e. with a signal function: Status: [Fun ~ TR
signal void ToggleT3Input (void) { T |0ch33 ™ T3l

while (1) { T3CON; [0:004B | T3IR

PORT3 = PORT3 ~ 0x40; // toggle P3.6

twatch (CLOCK / 100000); // with 100kHz View the Counter 3 status

} with the Peripheral dialog.

Also interrupt inputs are simulated: if a port pin is used as interrupt input, the
interrupt request will be set if you toggle the associated I/O pin.

102 Chapter 5. Testing Programs

Simulate external I/O Devices

External I/O devices are typical memory mapped. You may simulate such /O
devices with the Memory Window provided in the pVision2 debugger. Since
the C user program does not contain any variable declarations for such memory
regions it is required that you map this memory with the MAP command:

MAP X:0x1000, X:0x1FFF READ WRITE /* MAP memory for I/O area */

You may use breakpoints in combination with debug functions to simulate the
logic behind the I/O device. Refer to “User Functions” on page 132 for more
information. Example for a breakpoint definition:

BS WRITE 0x100000, 1, "IO access ()"

Assign Serial /0 to a PC COM Port

The ASSIGN command allows you to use a PC COM Port as input for an UART
in the pVision2 simulator. If you enter the following commands, serial I/O is
performed via the COM2: interface of your PC. The STIME variable allows you
to ignore the timing of the simulated serial interface.

>MODE COM2 9600, 0, 8, 1 /*9600 bps, no parity, 8 data & 1 stop bit*/
>ASSIGN COM2 <SOIN >S00UT /*ASCO output & input is done with COM2:*/
>SOTIME = 0 /*ignore timing of simulated ASCO interface*/

Getting Started and Creating Applications 103

Check lllegal Memory Accesses

Sometimes it is required to trap illegal memory accesses. The uVision2 access
breakpoints might be used together with the system variable _break . In the
following example the program execution stops when the array save record is
accessed outside of the function clear_records.

Breakpoints HE

Current Breakpoints

L sl
Access
Exprassinn I\measure\sa\;e_record I Bead V¥ Write
Count; I1 H: Size
2 ; — [~ Bytes
Command: Ifbreakﬁ = (% < Vweasureb\clear_records || § >= main) I vl 7| Objects
Defns || KilSelected | wnan | Close |

Command Input from File

Commands for the pVision2 debugger might be read from file with the
INCLUDE command. Under Options for Target - Debug you may also specify
an Initialization File with debug commands. Refer to page 90 for more
information.

Preset /0 Ports or Memory Contents

Some applications require that I/O port values or memory contents are set to
specific values before program simulation. In the debug Initialization File you
may include the commands that are required to preset the simulator. Example:
PORT3 = 0 /* set Port3 to zero */

LOAD MEMORY .HEX /* load hex file contents to memory */
/* use the SAVE command to save memory contents */

104 Chapter 5. Testing Programs

Write Debug Output to a File

The commands LOG and SLOG can be used to write debug output files. You
may run the pVision2 debugger in batch files and use a debug Initialization File
that contains these commands to automate program test. Refer to “pVision 2
Command Line Invocation” on page 177 for additional information.

>LOG >>C:\TMP\DEBUGOUT.TXT /* protocol Output Window - Command page*/
>SLOG >>C:\TMP\DEBUGOUT.TXT /* protocol Serial Window output */
>/* Output of the Command page and the Serial Window is written to file */
>LOG OFF /* stop Output Window protocol */
>SLOG OFF /* stop Serial Window protocol */

Use Keyboard Shortcuts
View — Options allows you

tO Conﬁgure Shortcut keys Editor | Colors & Fonts Shortout Keye |

: . —Selecta Command . Description
for all meny ltems' Wlth Debug Breakpoints = Insent/Remove Breakpoint
thls dlalog yOll may Debug:Disable All Breakpoints j
. . . Debuy:Enable/Disable Breakpoint
personahze lJ.VlSlOIlz to your Diebug Enable/Disable Trace Recarding
Debug:Function Editor (Open Ini File)
needs. For example, you DebugGo
Diebug:Inline Assemb| . : .
may add a Shortcut key '[0 Diebug Insert/Hemove Breakpoint Ceeled SlimiENEE
: . . DebugKill All Breakpoirts Cirl+B
insert/remove breakpoints in Debugviemry Map
. . Debug:Performance Analyzer
an ed]tor W]ndOW_ Debug:Run ta Cursor line
Debug:Show Next Statement =
NOTE Create Shortcut Bemowve Shorcut

The assignment of shortcut

. . Reset All Shortcuts |
keys is saved in the file

C:\KEIL\UV2\UV2.MAC. x|

Cancel | Detaults

Kernel Aware Debugging

uVision2 supports Kernel Awareness for operating systems with debug DLLSs.
Refer to “RTX Kernel Aware Debugging” on page 167 for details on testing
programs that use the RTX-51 Tiny real-time operating system. RTX-51 Full
applications are tested with similar features. puVision2 allows you to add own
debug DLLs that display the status information for operating systems or other
applications. We will provide an Application Note on www keil.com that
explains how to write user-specific debug DLLs for the uVision2 debugger.

Getting Started and Creating Applications 105

Chapter 6. pVision2 Debug Functions

This chapter discusses a powerful aspect of the pVision2: debug functions. You
may use functions to extend the capabilities of the pVision2 debugger. You may
create functions that generate external interrupts, log memory contents to a file,
update analog input values periodically, and input serial data to the on-chip serial
port.

NOTE

Do note confuse uVision2 debug functions with functions of your target
program. uVision2 debug functions aids you in debugging of your application
and are entered or with the Function Editor or on uVision2 command level.

uVision2 debug functions utilize a subset of the C programming language. The
basic capabilities and restrictions are as follows:

= Flow control statements if, else, while, do, switch, case, break, continue,
and goto may be used in debug functions. All of these statements operate in
uVision2 debug functions as they do in ANSI C.

= Local scalar variables are declared in debug functions in the same way they
are declared in ANSI C. Arrays are not allowed in debug functions.

For a complete description of the “Differences Between Debug Functions and C”
refer to page 138. m

Creating Functions

pVision2 has a built-in debug function editor which opens with Debug —
Function Editor. When you start the function editor, the editor asks for a file
name or opens the file specified under Options for Target — Debug —
Initialization File. The debug function editor works in the same way as the
build-in pVision2 editor and allows you to enter and compile debug functions.

106 Chapter 6. pVision2 Debug Functions

i Function Editor - measure.ini [2]x]
DOpen | Mew. . | Sawve | Save As.. | Compile |
Compile Errars: I j
g — .
S* Mydtatus shows analog and other wvalues *f
,-"l* __ *,-"

FUNC wvoid MyStatus (wvoid) {
printf Wty
printf (" inalog-Input-0: FfWwn", ainl);
printf (" &nalog-Input-1: FfWwn", ainl);
printf (" inalog-Input-2: FfWwn", ainl);
printf (" Analog-Input-3: %fvn", ain3d);

printf (" Registers (CEP): $%04X\n", CP);
printf {" Program Counter: $%0&51XHYn", $);
printf Wn'y;
} -
KN a7
Options Description ‘
Open open an existing file with pVision2 debug functions or commands.
New create a new file
Save save the editor content to file.
Save As specify a file for saving the debug functions.
Compile send current editor content to the pVision2 command interpreter. This
compiles all debug functions.
Compile Errors shows a list of all errors. Choose an error, this locates the cursor to the
erroneous line in the editor window.

Once you have created a file with uVision2 debug functions, you may use the
INCLUDE command to read and process the contents of the text file. For
example, if you type the following command in the command window, pVision2
reads and interprets the contents of MYFUNCS.INIL.

>INCLUDE MYFUNCS.INI

MYFUNCS.INI may contain debug commands and function definitions. You
may enter this file also under Options for Target — Debug - Initialization File.
Every time you start the pVision2 debugger, the contents of MYFUNCS.INI
will be processed.

Functions that are no longer needed may be deleted using the KILL command.

Getting Started and Creating Applications 107

Invoking Functions

To invoke or run a debug function you must type the name of the function and
any required parameters in the command window. For example, to run the
printf built-in function to print “Hello World,” enter the following text in the
command window:

>printf ("Hello World\n")

The uVision2 debugger responds by printing the text “Hello World” in the
Command page of the Output Window.

Function Classes

uVision2 supports the following three classes of functions: Predefined
Functions, User Functions, and Signal Functions.

= Predefined Functions perform useful tasks like waiting for a period of time
or printing a message. Predefined functions cannot be removed or redefined.

= User Functions extend the capabilities of uVision2 and can process the same
expressions allowed at the command level. You may use the predefined
function exec, to execute debug commands from user and signal functions.

= Signal Functions simulate the behavior of a complex signal generator and
lets you create various input signals to your target application. For example,
signals can be applied on the input lines of the CPU under simulation. Signal
functions run in the background during your target program’s execution.
Signal functions are coupled via CPU states counter which has a resolution of

instruction state. A maximum of 64 signal functions may be active
simultaneously.

As functions are defined, they are entered into the internal table of user or signal
functions. You may use the DIR command to list the predefined, user, and
signal functions available.

DIR BFUNC displays the names of all built-in functions. DIR UFUNC
displays the names of all user functions. DIR SIGNAL displays the names of all
signal functions. DIR FUNC displays the names of all user, signal, and built-in
functions.

108 Chapter 6. pVision2 Debug Functions

Predefined Functions

puVision2 includes a number of predefined debug functions that are always
available for use. They cannot be redefined or deleted. Predefined functions are
provided to assist the user and signal functions you create.

The following table lists all predefined pVision2 debug functions.

Return Name Parameter Description

void exec (“‘command_string”) Execute Debug Command

double getdbl (“prompt_string”) Ask the user for a double number

int getint (“prompt_string”) Ask the user for a int number

long getlong (“prompt_string”) Ask the user for a long number

void memset (start_addr, value, len) fill memory with constant value

void printf (“string’, ...) works like the ANSI C printf function

int rand (int seed) return a random number in the range -32768
to +32767

void twatch (ulong states) Delay execution of signal function for

specified number of CPU states

int _TaskRunning_ (ulong func_address) Checks if the specified task function is the
current running task. Only available if a DLL
for RTX Kernel Awareness is used.

uchar _RBYTE (address) Read char on specified memory address
uint _RWORD (address) Read int on specified memory address
ulong _RDWORD (address) Read long on specified memory address
float _RFLOAT (address) Read float on specified memory address
double _RDOUBLE (address) Read double on specified memory address
void _WBYTE (address, uchar val) Write char on specified memory address
void _WWORD (address, uint val) Write int on specified memory address
void _WDWORD (address, ulong val) Write long on specified memory address
void _WFLOAT (address, float val) Write float on specified memory address
void _WDOUBLE (address, double val) Write double on specified memory address

The predefined functions are described below.

void exec (“command_string”)

The exec function lets you invoke pVision2 debug commands from within your
user and signal functions. The command_string may contain several commands
separated by semicolons.

Getting Started and Creating Applications 109

The command_string is passed to the command interpreter and must be a valid
debug command.

Example

>exec ("DIR PUBLIC; EVAL R7")
>exec ("BS timerO")
>exec ("BK *")

double getdbl (“prompt_string”), int getint (“prompt_string”),
long getlong (“prompt_string”)

This functions prompts you to enter a number and, upon entry, returns the value
of the number entered. If no entry is made, the value 0 is returned.

Example

>age = getint ("Enter Your Age")

void memset (start address, uchar value, ulong length)

The memset function sets the memory specified with start address and length to
the specified value.

Example

>MEMSET (0x20000, 'a', 0x1000) /* Fill 0x20000 to Ox20FFF with "a" */

void printf (“format_string”, ...)

The prinf function works like the ANSI C library function. The first argument
is a format string. Following arguments may be expressions or strings. The
conventional ANSI C formatting specifications apply to printf.

Example

>printf ("random number
random number = 1014H

%04XH\n", rand(0))

>printf ("random number
random number = 64D6H

%04XH\n", rand(0))
>printf ("%s for %d\n", "uVision2", 166)
uVision2 for 166

>printf ("%lu\n", (ulong) -1)
4294967295

110 Chapter 6. pVision2 Debug Functions

int rand (int seed)

The rand function returns a random number in the range -32768 to +32767. The
random number generator is reinitialized each time a non-zero value is passed in
the seed argument. You may use the rand function to delay for a random
number of clock cycles or to generate random data to feed into a particular
algorithm or input routine.

Example

>rand (0x1234) /* Initialize random generator with 0x1234 */
0x3B98

>rand (0) /* No initialization */
0x64BD

void twatch (long states)

The twatch function may be used in a signal function to delay continued
execution for the specified number of CPU states. pVision2 updates the state
counter while executing your target program.

Example

The following signal function toggles the INTO input (P3.2) every second.

signal void int0_signal (void) {
while (1) {

PORT3 |= 0x04; /* pull INTO(P3.2) high */
PORT3 &= ~0x04; /* pull INTO(P3.2) low and generate interrupt */
PORT3 |= 0x04; /* pull INTO(P3.2) high again */
twatch (CLOCK) ; /* wait for 1 second */
}
}
NOTE

The twatch function may be called only from within a signal function. Calls
outside a signal function are not allowed and result in an error message.

Getting Started and Creating Applications 111

int _TaskRunning_ (ulong func_address)

This function checks if the specified task function is the current running task.
TaskRunning is only available if you select an Operating System under
Options for Target — Target. pVision2 loads an additional DLL that kernel
awareness for operating systems. Refer to “RTX Kernel Aware Debugging” on
page 167 for more information.

The result of the debug function TaskRunning may be assigned to the
_break_system variable to stop program execution when a specific task is
active. An example is shown on page 169.

Example

> TaskRunning (command) /* check if task 'command' is running */
0001 /* returns 1 if task is currently running*/
> break = TaskRunning (init) /* stop program when 'init' is running */

uchar _RBYTE (address), uint _RWORD (address),
ulong _RDWORD (address), float _RFLOAT (address),
double _RDOUBLE (address)

These functions return the content of the specified memory address.

Example

> RBYTE (0x20000) /* return the character at 0x20000 */
> RFLOAT (0xE000) /* return the float value at 0xE000 */
>_RDWORD (0x1000) /* return the long value at 0x1000 */

_WBYTE (addr, uchar value), _WWORD (addr, uint value),
_WDWORD (addr, ulong value), _WFLOAT (addr, float value,
_WDOUBLE (addr, double value)

These functions write a value to the specified memory address.

Example
> WBYTE (0x20000, 0x55) /* write the byte 0x33 at 0x20000 */
>_RFLOAT (0xE000, 1.5) /* write the float value 1.5 at 0xE000 */

> RDWORD (0x1000, 12345678) /* write the long value 12345678 at 0x1000*/

112 Chapter 6. pVision2 Debug Functions

User Functions

User functions are functions you create to use with the pVision2 debugger. You
may enter user functions directly in the function editor or you may use the
INCLUDE command to load a file that contains one or more user functions.

NOTE
uVision2 provides a number of system variables you may use in user functions.
Refer to “System Variables” on page 101 for more information.

User functions begin with FUNC keyword and are defined as follows:

FUNC return type fname (parameter list) {
statements

}

return_type is the type of the value returned by the function and may be: bit,
char, float, int, long, uchar, uint, ulong, void. You may use
void if the function does not return a value. If no return type is
specified the type int is assumed.

fname is the name of the function.

parameter_list is the list of arguments that are passed to the function. Each
argument must have a type and a name. If no arguments are
passed to the function, use void for the parameter list. Multiple
arguments are separated by commas.

statements are instructions the function carries out.

{ is the open curly brace. The function definition is complete
when the number of open braces is balanced with the number of
the closing braces (}).

Example

The following user function displays the contents of several CPU registers. For
more information about “Creating Functions” refer to page 119.

FUNC void MyRegs (void) {
printf ("---------- MyRegs () ---------- \n") ;
printf (" R4 R8 R9 R10 R11 R12\n");
printf (" %04X %04X %04X %04X %04X %04X\n",
R4, R8, RY9, R10, R11l, R12);
printf ("--------- e \n") ;

}

Getting Started and Creating Applications 113

To invoke this function, type the following in the command window.

MyRegs ()

When invoked, the MyRegs function displays the contents of the registers and
appears similar to the following:

---------- MyRegs () ----------
R4 R8 R9 R10 R11 RI12
B02C 8000 0001 0000 0000 0000

You may define a toolbox button to invoke the user function with:

DEFINE BUTTON "My Registers", "MyRegs()"

Restrictions

= pVision2 checks that the return value of a user function corresponds to the
function return type. Functions with a veid return type must not return a
value. Functions with a non-veid return type must return a value. Note that
puVision2 does not check each return path for a valid return value.

= User functions may not invoke signal functions or the twatch function.
= The value of a local object is undefined until a value is assigned to it.

= Remove user functions using the KILL FUNC command.

114 Chapter 6. pVision2 Debug Functions

Signal Functions

A Signal function let you repeat operations, like signal inputs and pulses, in the
background while pVision2 executes your target program. Signal functions help
you simulate and test serial I/O, analog I/O, port communications, and other
repetitive external events.

Signal functions execute in the background while pVision2 simulates your target
program. Therefore, a signal function must call the twatch function at some
point to delay and let pVision2 run your target program. pVision2 reports an
error for signal functions that never call twatch.

NOTE
uVision2 provides a number of system variables you may use in your signal
functions. Refer to “System Variables” on page 101 for more information.

Signal functions begin with the SIGNAL keyword and are defined as follows:

SIGNAL void fname (parameter list) {
statements

}

fname is the name of the function.

parameter_list 1is the list of arguments that are passed to the function. Each
argument must have a type and a name. If no arguments are
passed to the function, use void for the parameter list. Multiple
arguments are separated by commas.

statements are instructions the function carries out.

{ is the open curly brace. The function definition is complete
when the number of open braces is balanced with the number of
the closing braces (“}”).

Example

The following example shows a signal function that puts the character ‘A’ into
the serial input buffer once every 1,000,000 CPU states. For more information
about “Creating Functions” refer to page 119.

SIGNAL void StuffSOin (void) {
while (1) {
SOIN = 'A';
twatch (1000000) ;
}
}

Getting Started and Creating Applications 115

To invoke this function, type the following in the command window.

Stuffs0in ()

When invoked, the StuffS0in signal function puts and ASCII character ‘A’ in
the serial input buffer, delays for 1,000,000 CPU states, and repeats.

Restrictions

The following restrictions apply to signal functions:

= The return type of a signal function must be void.

= A signal function may have a maximum of eight function parameters.

= A signal function may invoke other predefined functions and user functions.
= A signal function may not invoke another signal function.

= A signal function may be invoked by a user function.

= A signal function must call the twatch function at least once. Signal
functions that never call twatch do not allow the target program time to
execute. Since you cannot use Ctrl+C to abort a signal function, pVision2
may enter an infinite loop.

Managing Signal Functions

puVision2 maintains a queue for active signal functions. A signal function may
either be either idle or running. A signal function that is idle is delayed while it
waits for the number of CPU states specified in a call to twatch to expire. A
signal function that is running is executing statements inside the function.

When you invoke a signal function, pVision2 adds that function to the queue and
marks it as running. Signal functions may only be activated once, if the function
is already in the queue, a warning is displayed. View the state of active signal
functions with the command SIGNAL STATE. Remove active signal functions
form the queue with the command SIGNAL KILL.

When a signal function invokes the twatch function, it goes in the idle state for
the number of CPU states passed to twatch. After the user program has
executed the specified number of CPU states, the signal function becomes
running. Execution continues at the statement after twatch.

If a signal function exits, because of a return statement, it is automatically
removed from the queue of active signal functions.

116 Chapter 6. pVision2 Debug Functions

Analog Example

The following example shows a signal function that varies the input to analog
input 0 on a C167. The function increases and decreases the input voltage by 0.5
volts from OV and an upper limit that is specified as the signal function’s only
argument. This signal function repeats indefinitely, delaying 200,000 states for
each voltage step.

signal void analog0 (float limit) {
float volts;

printf ("Analog0 (%f) entered.\n", limit);

while (1) { /* forever */
volts = 0;
while (volts <= limit) {
ain0 = volts; /* analog input-0 */
twatch (200000); /* 200000 states Time-Break */
volts += 0.1; /* increase voltage */
}

volts = limit;

while (volts >= 0.0) {
ain0 = volts;
twatch (200000); /* 200000 states Time-Break */
volts -= 0.1; /* decrease voltage */

}

}
}

The signal function analog0 can then be invoked as follows:

>ANALOGO (5.0) /* Start of 'ANALOG()' */
ANALOGO (5.000000) ENTERED

The SIGNAL STATE command to displays the current state of the analog0:

>SIGNAL STATE
1 idle Signal = ANALOGO (line 8)

pVision?2 lists the internal function number, the status of the signal function: idle
or running, the function name and the line number that is executing.

Since the status of the signal function is idle, you can infer that analog0
executed the twatch function (on line 8 of analog0) and is waiting for the
specified number of CPU states to elapse. When 200,000 states pass, analog0
continues execution until the next call to twatch in line 8 or line 14.

The following command removes the analog0 signal function from the queue of
active signal functions.

>SIGNAL KILL ANALOGO

Getting Started and Creating Applications 117

Differences Between Debug Functions and C

There are a number of differences between ANSI C and the subset of features
support in pVision2 debug user and signal functions.

= uVision2 does not differentiate between uppercase and lowercase. The
names of objects and control statements may be written in either uppercase or
lowercase.

= uVision2 has no preprocessor. Preprocessor directives like #define,
#include, and #ifdef are not supported.

= uVision2 does not support global declarations. Scalar variables must be
declared within a function definition. You may define symbols with the
DEFINE command and use them like you would use a global variable.

= In pVision2, variables may not be initialized when they are declared.
Explicit assignment statements must be used to initialize variables.

= uVision2 functions only support scalar variable types. Structures, arrays, and
pointers are not allowed. This applies to the function return type as well as
the function parameters.

= uVision2 functions may only return scalar variable types. Pointers and
structures may not be returned.

= uVision2 functions cannot be called recursively. During function execution,
uVision2 recognizes recursive calls and aborts function execution if one is
detected.

= uVision2 functions may only be invoked directly using the function name.
Indirect function calls via pointers are not supported.

= uVision2 supports only the ANSI style for function declarations with a
parameter list. The old K&R format is not supported. For example, the
following ANSI style function is acceptable.
func test (int pal, int pa2) { /* ANSI type, correct */

VR
}

The following K&R style function is not acceptable.

func test (pal, pa2) /* 01d K&R style is */
int pal, pa2; /* not supported */
{

/* ... %/

}

118 Chapter 6. pVision2 Debug Functions

Differences Between pVision2 and dScope

The puVision2 debugger replaces the Keil dScope for Windows. dScope debug
functions require the following modifications for correct execution in the
uVision2 debugger.

= In dScope the memset debug function parameters are different. The
uVision2 memset debug function parameters are now identical with the
ANSI C memset function.

= The dScope debug function bit is no longer available and needs to be
replaced with RBYTE and WBYTE function calls. With dScope debug
functions char, uchar, int, uint, long, ulong, float, and double it is possible
to read and write memory. Replace these debug functions in pVision2
according the following list.

dScope Memory pVision2 Replacement for

Access Function Memory Read Memory Write

bit _RBYTE combine _RBYTE and _WBYTE
char, uchar _RBYTE _WBYTE

int, uint _RWORD _WWORD

long, ulong _RDWORD _WDWORD

float _RFLOAT _WFLOAT

double _RDOUBLE _WDOUBLE

In dScope the memset debug function parameters are different. The
uVision2 memset debug function parameters are now identical with the
ANSI C memset function.

Getting Started and Creating Applications 119

Chapter 7. Sample Programs

This section describes the sample programs that are included in our tool kits.
The sample programs are ready for you to run. You can use the sample
programs to learn how to use our tools. Additionally, you can copy the code
from our samples for your own use.

The sample programs are found in the C:\KEIL\CSI\EXAMPLES\ folder. Each
sample program is stored in a separate folder along with project files that help
you quickly build and evaluate each sample program.

The following table lists the sample programs and their folder names.

Example Description ‘

BADCODE Program with syntax errors and warnings. You may use the pVision2 editor to
correct these.

CSAMPLE Simple addition and subtraction calculator that shows how to build a multi-
module project with pVision2.

DHRY Dhrystone benchmark. Calculates the dhrystones factor for the target CPU.

HELLO Hello World program. Try this first when you begin using pVision2. It prints

Hello World on the serial interface and helps you confirm that the development
tools work correctly. Refer to “HELLO: Your First 8051 C Program” on page
142 for more information about this sample program.

MEASURE Data acquisition system that collects analog and digital signals. Refer to
“MEASURE: A Remote Measurement System” on page 146 for more
information about this sample program.

RTX_EX1 Demonstrates round-robin multitasking using RTX-51 Tiny.

RTX_EX2 Demonstrates an RTX-51 Tiny application that uses signals.

SIEVE Benchmark that calculates prime numbers.

TRAFFIC Shows how to control a traffic light using the RTX-51 Tiny real-time executive.
WHETS Benchmark program that calculates the whetstones factor for the target CPU.

To begin using one of the sample projects, use the pVision2 menu Project —
Open Project and load the project file.

The following sections in this chapter describe how to use the tools to build the
following sample programs:

m HELLO: Your First 8051 C Program
m MEASURE: A Remote Measurement System

120 Chapter 7. Sample Programs

HELLO: Your First 8051 C Program

The HELLO sample program is located in C:\KEIL\C51\EXAMPLES\HELLO\ .
HELLO does nothing more than print the text “Hello World” to the serial port.
The entire program is contained in a single source file HELLO.C.

This small application helps you confirm that you can compile, link, and debug
an application. You can perform these operations from the DOS command line,
using batch files, or from uVision2 for Windows using the provided project file.

The hardware for HELLO is based on the standard 8051 CPU. The only on-chip
peripheral used is the serial port. You do not actually need a target CPU because
uVision2 lets you simulate the hardware required for this program.

HELLO Project File

In pVision, applications are — EEESIHEEINE HE
maintained in a project file. | tookin |<hel
A project file has been Blfelouv

created for HELLO. To
load this project, select
Open Project from the
Project menu and open

HELLO.UV2 from the folder
..\C51\EXAMPLES\HELLO. Flegeme el w2 =

Files of type: IPrUjeCl Files *.uvz) j Cancel |

Editing HELLO.C

You can now edit HELLO.C. Double click on HELLO.C in the Files page of the
Project Window. uVision2 loads and displays the contents of HELLO.C in an
editor window.

Getting Started and Creating Applications 121

File Edit View Project Debug Tools Window Help ‘
AsHg|rER oo & e Vi s Y s @A TR a0y

& 14 04 & | X[Small Model]|
— "=

/33 Small odel Fincluds <stdio.hs 7+ standard I/0 .h-filse =7 =
E+E3 Source Files #include <regl6?.h> /* special function registsr BOC167 *+/ —
i Hello.c
=23 Config Files
- L[Srarl67.066 I
B3 Documentation /* main program */
b DAhslramM JEEEEEE AR R AR AL
vwoid main (void) { /* execution starts here 7
4% initialize the serial interface 7
#ifndef MCEL1E7 /* do not initialize if you use Monitor-1éé 7
B3 |= 0x0400; /* SET PORT 3.10 OUTFUT LATCH {TED) +f
DEZ |= 0x0400; /* SET PORT 3.10 DIRECTION CONTROL (TED OUTEUT) *+/
DE3 §= OxF7FF; /* RESET FORT 3.11 DIRECTION CONTROL (RED INEUT) */
S0TIC = 0x80; /* SET TRANSMIT INTERRUET FLAG *f
SO0RIC = 0x00; /* DELETE RECEIVE INTERRUET FLAG */
S0BG = Ox40; /* SET BAUDRATE TO 9600 BAUD */
S0CON = 0x8011; /* SET SERIAL MODE */
fendif
printf ("Hello Worldin"); /* the "printf’ function call *
while (1) { /* An embedded program does not stop and *
P /* never returns. We've used an endless 7
} /* loop. You may wish to put in your own */
' /* code were we'wve printed the dots {...). */

" Bn.. [$ress [Q8o

[4[4T*T*T Build £ Command A_Findin Files / 1N | "_I
[L24C76 UM | [RV

Compiling and Linking HELLO

When you are ready to compile and link your project, use the Build Target
command from the Project menu or the Build toolbar. pVision2 begins to
translate and link the source files and creates an absolute object module that you
can load into the pVision2 debugger for testing. The status of the build process
is listed in the Build page of the Output Window.

(SIS

Build target 'Small Model' iI

compiling Hello.c...

assembling Startl67.abb6...

linking...

creating hex file from "Hella"...

"Hello" - 0 Error(s). 0 Warning(s). =
Lof*

[A[4 > [>T, Build £ Cormmand }, Findn Files / 1K

NOTE
You should encounter no errors when you use uVision2 with the provided
sample projects.

122

Chapter 7. Sample Programs

@] Testing HELLO

Once the HELLO program is compiled and linked, you can test it with the
uVision2 debugger. In pVision2, use the Start/Stop Debug Session command
from the Debug menu or toolbar. pVision2 initializes the debugger and starts
program execution till the main function. The following screen displays.

i Hello - pVision2

File Edit View Project Debug Tools Window Help

[_ O[]

BwEd| R e

SN | onolog]

S e|éle mRE oerm|

Eloned o sMelaEvsoe »|

M

Register
= word
-1
11
rE
13
“rd
15
B
7
-8
rg
=110
-l
12
-3
114
~r18
B byte
E-ays
cp
~5p

Walue

03000
0x0000
00000
0x0000
Ox0000
0x0000
Ox0000
0x0000
Ox0000
00001
0x0000
00000
0x0000
00000
0x0000
Ox0000

=11]
Oxdc0n

rricll 0x0000
~mdh 0x0000
~dnnfl MhelIN210

ElFi.. SPRegs [\L)Books

[~ |

B C:\Keil\C166L\EXAMPLES\hello\Hello.c !Elﬂ
AR AR AR AR R AR ﬂ
-

void main (woid) { /* execution starts here */
/* initialize the serial interface */
#ifndef MCE167 /% do not initialize if you use Monitor-166 */
P3 |= 0x0400; /* SET PORT 3.10 OUTPUT LATCH (TXD) */
DP3 |= 0x0400; /* SET PORT 3.10 DIRECTION CONTROL (TXD OUTBUT) */
DP3 &= OxF7FF; /* RESET PORT 3.11 DIRECTION CONTROL (RED INBUT) */
s0TIC = 0xB0; /* EET TRANSMIT INTERRUPT FLAG *f
SORIC = 0x00; /* DELETE RECEIVE INTERRUFT FLAG *f
s0BG = Ox40; /* SET BAUDRATE TO 3600 BAUD *f
s0CON = DxB011; /* @ET ZERIAL MODE */
#endif
printf ("Hello Worldin"); /* the "printf’ function call */
whiles (1) ¢ /* An embedded program doss not stop and */
[/* never returns. We've used an endless */
} /* loop. You may wish to put in your own = */
i /* code were we've printed the dots (...). */

H[Toad "C:\Keil “C166~EXEMPLES ~hello“~Hello"

Bl

>

ASM ASSIGN

=

ill Marne [value

[» [cof[«]

]

[A[4T* ¥ Locals A Watch#1 A Watth# A_Call Stack /

\ [how[T Rewl

7 [

Open Serial Window #1 that displays the serial output of the application
with the Serial Window #1 command from the View menu or the Debug

toolbar.

Run HELLO with the Go command from the Debug menu or toolbar. The
HELLO program executes and displays the text “Hello World” in the
serial window. After HELLO outputs “Hello World,” it begins executing
an endless loop.

window.

Stop Running HELLO with the Halt command from the Debug menu or
the toolbar. You may also type ESC in the Command page of the Output

Getting Started and Creating Applications 123

During debugging pVision2 will show the following output:

B Hello - pvision2? [_[O]x]
File Edit View Project Debug Tools Window Help ‘
QER@| e = sy o B)
glHones o sEe|aEvEDE »|

P& C\keinCi6\EXAMPLE S\hellovHello.c !EIEI
Register “alue = 7 T -

main program */
- word Frrerrerasiaasag
0 03000 void main (void) | /* exscution starts hers 7
n 00000 /* initialize the serial interfacs */
“ré 00000 #ifndef MCELET /* do not initialize if you use Monitor-166 */
13 0x0000 P3 |= 0x0400; A* SET PORT 3.10 OUTPUT LATCH (TXD) */
“r4 0x000c DE3 |= 0x0400; /* EET PORT 3.10 DIRECTION CONTROL (TXD OUTBUT) */
15 00000 DP3 &= OxF7FF; /* RESET PORT 3.11 DIRECTION CONTROL (RED INBUT) */
16 00000 s0TIC = 0x80; /* EET TRANSMIT INTERRUPT FLAG */
17 0x0000 SORIC = 0x00; /* DELETE RECEIVE INTERRUFT FLAG *f
¥ 5 a 30BR, = Ox40; /* @ET BAUDRATE TO 9600 BAUD *f
d 20 1; /* EET ZERIAL MODE *f
D818 #end
SR IR T 11 R ‘ ‘ ‘
"o 00000 printf ("Hella Worldin™); /* the "printf’ function call */
whiles (1) ¢ /* An embedded program doss not stop and */
-r3 00000
A /* never returns. We'wve used an endless */
14 0x0000 N : ; N
e o y /* loop. You may wish to put in your own /
r } /* cods were we've printsd ths doks (...). */
B hyte =
B sys
cp Oxfc00
~sp OxfcO0
mmdl 0x0000
~mdh 0x0000
dnnil ANZR |
Elfi.. SPRegs [LBo...
HToad "C:wKeilCl66~EXABMPLEShello -Hella" =] fll Name [alue |
>
ASM ASSIGN BreakDisable EresakEnable BreakKill Iﬂ
[l 4> |51 Buid p Command £ Findin Files |l _>| [A[4T* ¥ Locals A Watch#1 A Watth# A_Call Stack /
[Lica NUM | [RIW [4

Single-Stepping and Breakpoints

4T Use the Insert/Remove Breakpoints command from the toolbar or the
local editor menu that opens with a right mouse click and set a breakpoint
at the beginning of the main function.

% Use the Reset CPU command from the Debug menu or toolbar. If you
have halted HELLO start program execution with Run. pVision2 will
stop the program at the breakpoint.

F} You can single-step through the HELLO program using the Step buttons in
the debug toolbar. The current instruction is marked with a yellow arrow.

The arrow moves each time you step

l}s Place the mouse cursor over a variable to view their value.

@ You may stop debugging at any time with Start/Stop Debug Session
command.

124 Chapter 7. Sample Programs

MEASURE: A Remote Measurement System

The MEASURE sample program is located in the \C51\EXAMPLES\MEASURE\
folder. MEASURE runs a remote measurement system that collects analog and
digital data like a data acquisition systems found in a weather stations and
process control applications. MEASURE is composed of three source files:
GETLINE.C, MCOMMAND.C, and MEASURE.C.

This implementation records data from two digital ports and four A/D inputs. A
timer controls the sample rate. The sample interval can be configured from

1 millisecond to 60 minutes. Each measurement saves the current time and all of
the input channels to a RAM buffer.

Hardware Requirements

The hardware for MEASURE is based on the C515 CPU. This microcontroller
provides analog and digital input capability. Port 4 and port 5 is used for the
digital inputs and ANO through AN3 are used for the analog inputs. You do not
actually need a target CPU because pVision2 lets you simulate all the hardware
required for this program.

MEASURE Project File
=L The project file for the MEASURE sample

=3 Small Model

S A Main Files program is called MEASURE.UV2. To load this
Meommand.c project file, use Open Project from the Project
Measure.c .

Getling o menu and select MEASURE.UV2 in the folder
=4 10 Files C:\KEIL\C51\EXAMPLES\MEASURE.
Futchar.c
Getkey.c
=0 System Files The Files page in the Project Window shows the

s source files that compose the MEASURE project.

3 Docurmentation The three application related source files that are
e Abstractt located in the Main Files group. The function of
the source files is described below. To open a
" Bries S [e | source file, double-click on the filename.

The project contains several targets for different
test environments. For debugging with the
simulator select the target Small Model in the
Build toolbar.

ge Model
Keil MCB251

Getting Started and Creating Applications 125

MEASURE.C contains the main C function for the measurement system and the
interrupt routine for timer 0. The main function initializes all
peripherals of the C515 and performs command processing for
the system. The timer interrupt routine, timer0, manages the real-
time clock and the measurement sampling of the system.

MCOMMAND.C processes the display, time, and interval commands. These
functions are called from main. The display command lists the
analog values in floating-point format to give a voltage between
0.00V and 5.00V.

GETLINE.C contains the command-line editor for characters received from the
serial port.

| Compiling and Linking MEASURE

When you are ready to compile and link MEASURE, use the Build Target
command from the Project menu or the toolbar. pVision2 begins to compile and
link the source files in MEASURE and displays a message when the build is
finished.

Once the project is build, you are ready to browse the symbol information or
begin testing the MEASURE program.

@ Browse Symbols

The MEASURE project is configured to generate full browse and debug
information. To view the information, use the Source Browse command from
the View menu or the toolbar. For more information refer to “Source Browser”
on page 58.

@] Testing MEASURE

The MEASURE sample program is designed to accept commands from the on-
chip serial port. If you have actual target hardware, you can use a terminal
simulation to communicate with the C515 CPU. If you do not have target
hardware, you can use pVision2 to simulate the hardware. You can also use the
serial window in pVision2 to provide serial input.

Once the MEASURE program is build, you can test it. Use the Start/Stop
Debug Session command from the Debug menu to start the pVision2 debugger.

126 Chapter 7. Sample Programs

Remote Measurement System Commands

The serial commands that MEASURE supports are listed in the following table.
These commands are composed of ASCII text characters. All commands must
be terminated with a carriage return. You can enter these commands in the
Serial Window #1 during debugging.

Command Serial Text Description ‘
Clear C Clears the measurement record buffer.

Display D Displays the current time and input values.

Time T hh:mm:ss Sets the current time in 24-hour format.

Interval | mm:ss.ttt Sets the interval time for the measurement samples. The

interval time must be between 0:00.001 (for 1ms) and
60:00.000 (for 60 minutes).

Start S Starts the measurement recording. After receiving the start
command, MEASURE samples all data inputs at the specified
interval.

Read R [count] Displays the recorded measurements. You may specify the

number of most recent samples to display with the read
command. If no count is specified, the read command
transmits all recorded measurements. You can read
measurements on the fly if the interval time is more than 1
second. Otherwise, the recording must be stopped.

Quit Q Quits the measurement recording.

@ View Program Code

uVision2 lets you view D T =
1 165: static char near cmdbuf [15]; SE .
the program COd.e 1n the 166: unsigned char i; %]
Disassembly Window 167: unsigned int idx o
1 1 169: #ifndef MCELGET #/%* no init of serial interf
that Opens WIth the VleW 170: <% initialize the serial interface =/
menu or the tOOIbar E{)DUD%;%BA 72;20‘0;4DX8;DD; Pa,#gzﬂigg FORE 310 DUTRUE LA
1 172: DP3 |= Ox0400; % SET PORT 3.10 DIRECTION
buFton. The Disassembly 0002330 7650004, SR DI jiseaviods
Window shows 00023352 GEESEFE7 AND ol CeEEmlEED
: . . - . Inline Assermbly...
intermixed source and 00023556 SEBEI0T MOV S asnoss Aonas)
assembly lines. You 00023388 EGBT0O0D MOV G [ecel s DEEit.
: 176: S0BG = Oxz40: s
may change the view DD0Z33EE EG5A4000 MOV 5 {gngTrace Recards
177: SOCON = 0x8011; ey S il
mode or use other 178: #endif 32 Enable/Disable Trace Recording
179; *} Bun till Cursor line
COl’nmandS from the 180: #%= setup the timer Insett/Femove Breakpoint
000233F2 EeDA1180 MOV k=
local menu that OpenS a1 TOREL = PERIOD: ﬂ%rablefDlsable Ereskpifit
. . 000233F6 EBZAICFS MOW T Clear complete Code Coverage Info
with the right mouse B R nenTan. =
[r Al

button.

Getting Started and Creating Applications 127

View Memory Contents

puVision2 displays =
memory in various X Address: Isave_recurd —
formats. The Memory 000Z1004: FF 00 OO0 00 00 OO0 00 00 00 00 00 OO0
. . 00021016: 00 Of "o oo =0 = oo oo se oo oo op
Window opens via the 00021022: oo 0 Decimal 0
View menu or the 0002102E: 00 0 Unsigned '
00021034: 00 01 Signed »
toolbar button. You can 00021046 00 Of :
enter the address of four 00021052: 00 O Ascl 0
: 0002105E: 00 01 Float 0
fhfferent memory areas 0002106A: 00 0l Double 0
in the pages. The local 00021076: 00 O
oooz1082: 00 o1 Maodify Mermony at 0x00021017 D
mengallowsyouto 000> 108E. 00 0f T TETm O T T 00—t
modify the memory 00021094: 00 00 00 00 00 00 00 OO 00 00 00 DD_I
000 N&é- OO0 00 N0 NN 00 00 00 00 o0 00 00
contents or select [4 [F TR Mernory #1 3 Hemory #2 A Memary #3 A Memory #4 7

different output formats.

Program Execution

g Before you begin simulating MEASURE, open the Serial Window #1 that
displays the serial output with the View menu or the Debug toolbar. You
may disable other windows if your screen is not large enough.

You can use the Step toolbar buttons on assembler instructions or source code
lines. If the Disassembly Window is active, you single step at assembly
instruction basis. If an editor window with source code is active, you single step
at source code level.

F} The SteplInto toolbar button lets you single-step through your application
and into function calls.

ﬁl StepOver executes a function call as single entity and is not interrupt
unless a breakpoint occurs.

{"il On occasion, you may accidentally step into a function unnecessarily.
You can use StepOut to complete execution of that function and return to
the statement immediately following the function call.

I::} A yellow arrow marks the current assembly or high-level statement. You
may use the you may accidentally step into a function unnecessarily. You
can use StepOut to complete execution of that function and return to the
statement immediately following the function call.

128

Chapter 7. Sample Programs

"

current cursor line as temporary breakpoint.

el

The toolbar or local menu command Run till Cursor Line lets you use the

With Insert/Remove Breakpoints command you can set or remove

breakpoints on high-level source lines or assembler statements.

& call stack

puVision2 internally tracks
function nesting as the
program executes. The Call
Stack page of the Watch
Window shows the current
function nesting. A double
click on a line displays the
source code that called the
selected function.

02 Trace Recording

It is common during debugging
to reach a breakpoint where
you require information like
register values and other
circumstances that led to the
breakpoint. If Enable/Disable
Trace Recording is set you
can view the CPU instructions
that were executed be reaching
the breakpoint. The Regs page
of the Project Window shows
the CPU register contents for
the selected instruction.

%! Callee Caller |
= | looo: \Meazure\save_measurements | \keasureitimer(75

007: Ox00000080 WPutchariputcharibl

002: \Putcharputchar YWPRINTFYSaweCh

003: A\ *C?PRNFMT print_formatter
004: \PRINTFY printf

008: \Measuremain

YWYCYPRNFM T print_formatter
‘Weasuremainy 191
0x00000000

[P Cocals j, Wiatch #1 J, Watch #2), Call Stack

22 char _getkey () { -
-10 00023658 SABYFE70 JHB SORIR, _getkey (0x23658)
22 char _getkey () {
=0 00023658 SABYFE70 JHB SORIR, _getkey (0x23658)
-8 00000080 FAD25632 JMPS timer0(0x23256)
69: static woid timerd(wvoid) interrupt 0x20 using I
-7 00023256 CH030300 SCXKT DPP3,#0=x0003
-6 00023254 CCOO0 NOP
=5 0002325C FEFOOOFC MOV DPP3:0x3C00,.RO
-4 00023260 CEO0800FC SCKT CP,#0xFCO0
=3 00023264 CCoOO NOP
T4 if [(measurement interwval) { e

00023266 92000200 JHB
758 Save_ measurements

00023262 BBCF
Sh:
57:
ESDDEEZDA F2F40&B0 MOV
4

=1

CALLR
static void save measurements

save_ record[sindex++] =
R4,DPP2:0x300A ~

0xFDO0.0, 0x02326E
0 <

save measurements (Ox230
[vold) {
current; 4

Getting Started and Creating Applications

129

Breakpoints Dialog

puVision2 also supports complex breakpoints as discussed on page 83. You may
want to halt program execution when a variable contains a certain value. The
example shows how to stop when the value 3 is written to current.time.sec.

Breakpoints HE

Current Breakpoints:

ACcEss

Expression; [currenttime.sec==3 [~ Bead ¥ rite
Count. |1 3: Si
0 m [~ Bytes
Command I — ¥ Objects

Defire | KilSelected | kinan | Closs |

Open the Breakpoints dialog from the Debug menu. Enter as expression
current.time.sec==3. Select the Write check box (this option specifies that
the break condition is tested only when the expression is written to). Click on
the Define button to set the breakpoint.

To test the breakpoint condition perform the following steps:
o8 Reset CPU.
If program execution is halted begin executing the MEASURE program.

After a few seconds, pVision2 halts execution. The program counter line in the
debug window marks the line in which the breakpoint occurred.

130

Chapter 7. Sample Programs

& Watch Variables

You may constantly view the contents of variables, structures, and arrays. Open
the Watch Window from the View menu or with the toolbar. The Locals page
shows all local symbols of the current function. The Watch #1 and Watch #2
pages allow you to enter any program variables as described in the following:

m Select the text <enter here> with a mouse click and wait a second. Another
mouse click enters edit mode that allows you to add variables. In the same

way you can modify variable values.

m Select a variable name in an Editor Window and open the local menu with a
right mouse click and use the command Add to Watch Window.

= You can enter WatchSet in the Output Window — Command page.

easuresindex

current
time

©SBC
- msec
por2
analog
- <enter hera>

structmrec{ ..}
structclock{ ..}
0x00

001
00290
0xD4AZ
[.1

A ATETEIT, Locals viratch #1 /4 Watch #2 p, Call Stack 7

To remove a variable, click on the
line and press the Delete key.

Structures and arrays open on
demand when you click on the [+]
symbol. Display lines are indented
to reflect the nesting level.

The Watch Window updates at the end of each execution command. You enable
may enable Periodic Window Update in the View menu to update the watch

window during program execution.

Getting Started and Creating Applications 131

View and Modify On-Chip Peripherals

uVision2 provides several ways to view and modify the on-chip peripherals used
in your target program. You may directly view the results of the example below
when you perform the following steps:

% Reset CPU and kill all defined breakpoints.
If program execution is halted begin executing the MEASURE program.

g Open the Serial Window #1 and enter the ‘d’ command for the
MEASURE application. MEASURE shows the values from I/O Port2 and
A/D input 0 — 3. The Serial Window shows the following output:

= Serial #1 - [O]x]

Command @ od

Display current Measurements: (ESC to abort)
ime: 0:01:45.323 P4:D1 PS5:1F AM0:2.70V AN1:1.309V ANZ:4.18V AN3:3.18V vl
77

You may now use the following procedures to supply input to the I/O pins:

132 Chapter 7. Sample Programs

Using Peripheral Dialog Boxes

uVision2 provides dialogs for: I/O Ports, Interrupts, Timers, A/D Converter,
Serial Ports, and chip-specific peripherals. These dialogs can be opened from
the Debug menu. For the MEASURE application you may open I/O Ports:Port4
and A/D Converter. The dialogs show the current status of the peripherals and
you may directly change the input values.

Parallel Port 4 X
Part 4 —Analog Digital Converter
pa: [0xFF 7 Bits 0 ADCOND: |0x83 ADDATH: (0«00 [~ BSY
o | Tl =l =l el il I ADM
: ID 03 ADDATL: |0x00
o ADCOMNT: |U 1« I ADEX
P VIV v ADST v 1ADC ™ ADCL

—Analog Input Channels

FANI |2.?DDD FANER ID.DDDD AE: ID.DDDD

Each of these dialogs lists the related

. |1.4DDD . ID.DDDD . ID.DDDD
SFR symbols and shows the current ANE ANS ANS
status of the peripherals. To change Anz [+2000 g 00000 | anno: o000
the inputs, change the values of the ANg: [Bzo00 g 00000 angs: [o.0000

Pins or Analog Input Channels.

Using VTREG Symbols

You may use the “CPU Pin Registers (VTREGs)” described on page 102 to
change input signals. In the Command page of the Output Window, you may
make assignments to the VTREG symbols just like variables and registers. For
example:

PORT4=0xDA set digital input PORT4 to OxDA.
AIN1=3.3 set analog input AIN1 to 3.3 volts.

Getting Started and Creating Applications 133

Using User and Signal Functions

You may combine the use of VTREG symbols defined
by the CPU driver and pVision2 user and signal Update Windows

functions to create a sophisticated method of
providing external input to your target programs. The
“Analog Example” on page 136 shows a signal Z

function that provides input to AINO. The signal 3

function is included in the MEASURE example and 4 | Analogl 5y
may be quickly invoked with the Toolbox button 5

Analog0..5V and changes constantly the voltage on
the input AINO.

1 Decimal Output

Hex Dutput

by Status Info

Stop Analogl

Using the Performance Analyzer

puVision2 lets you perform timing analysis of your applications using the
integrated performance analyzer. To prepare for timing analysis, halt program
execution and open the Setup Performance Analyzer dialog with the Debug

menu.
Setup Performance Analyzer [21x]
Current PA Ranges: Function Symbols:
0 Measuremain (0x023304) EXIT ;I
1 WMeasure'tirmerd (0x023256) GETARG
2 WMeasure\clear_records (0x023384) getcarg
3 WMeoommandimeasure_display (0x02302C) getchar
4 \Measure\save_measurements (0x023204) getling
5 \Measure\read_index (0x023344) getptr
isspace
main
measure_display
MNI_trap
1 + !
I | _I print_farmatter
Define Perarmance Analyzer Range: porinf
utchar
I\Measure\read_index L
sEvE_measurements
SaveCh
scant -
Deine | wizeeced | wmar | cese | [.

You may specify the function names dialog box available from the Setup menu.

134 Chapter 7. Sample Programs

Perform the following steps to see the performance analyzer in action:

% Reset CPU and kill all breakpoints.
If program execution is halted begin executing the MEASURE program.
g Select the Serial Window #1 and type the commands S Enter D Enter

SlRerformancelAnalyzey L) The Performance Analyzer
O 10 20 39 40 59 60 70 9 S0198% | shows a bar graph for each

|
o e range. The bar graph shows
|

\Measure\timer0: Il the percent of the time spent

\Measure\clear_records:

\Mcommandimeasure_display: I eXecuting Code n eaCh
\Measure\save_measurements:jjj .
\Measure\read_index: .| range. Click on the range to
mintime: maxtime: awgtime: totaltime: % count S€€C detaﬂed tlmlng statistics.
‘ 0.000009 ‘ 0.000011 ‘ 0.000010 | 0.009965 | 0.4 | 1005 Refer to page 91 for more
information.

The MEASURE application may be also tested on a Keil MCB517 board or
other C515 or C517 starter kits.

Getting Started and Creating Applications 135

Chapter 8. RTX-51 Real-Time Operating
System

RTX51 is a multitasking real-time operating system for the 8051 family. RTXS51
simplifies system and software design of complex and time-critical projects.
RTXS51 is a powerful tool to manage several jobs (tasks) on a single CPU. There
are two distinct versions of RTX51:

RTXS51 Full which performs both round-robin and preemptive task switching
with 4 task priorities and can be operated with interrupt functions in parallel.
RTX51 supports signal passing; message passing with a mailbox system and
semaphores. The os_wait function of RTX51 can wait for the following events:
interrupt; timeout; signal from task or interrupt; message from task or interrupt;
semaphore.

RTXS51 Tiny which is a subset of RTXS51 Full. RTXS51 Tiny easily runs on
single-chip systems without off-chip memory. However, program using RTX51
Tiny can access off-chip memory. RTXS51 Tiny allows round-robin task
switching, supports signal passing and can be operated with interrupt functions
in parallel. The os_wait function of RTX51 Tiny can wait for the following
events: timeout; interval; signal from task or interrupt.

The rest of this section uses RTX-51 to refer to RTX-51 Full and RTX-51 Tiny.
Differences between the two are stated where applicable.

Introduction

Many microcontroller applications require simultaneous execution of multiple
jobs or tasks. For such applications, a real-time operating system (RTOS) allows
flexible scheduling of system resources (CPU, memory, etc.) to several tasks.
RTX-51 implements a powerful RTOS that is easy to use. RTX-51 works with

all 8051 derivatives.
You write and compile RTX-51 programs using standard C constructs and ﬂ

compiling them with C51. Only a few deviations from standard C are required
in order to specify the task ID and priority. RTX-51 programs also require that
you include the RTX51.H or RTX51TNY.H header file. When you select in the
uVision2 dialog Options for Target - Target the operating system, the linker adds
the appropriate RTX-51 library file.

136 Chapter 8. RTX-51 Real-Time Operating System

Single Task Program

A standard C program starts execution with the main function. In an embedded
application, main is usually coded as an endless loop and can be thought of as a
single task that is executed continuously. For example:

int counter;

void main (void) {
counter = 0;

while (1) { /* repeat forever */
counter++; /* increment counter */

}
}

Round-Robin Task Switching

RTX51 Tiny allows a quasi-parallel, simultaneous execution of several tasks.
Each task is executed for a predefined timeout period. A timeout suspends the
execution of a task and causes another task to be started. The following example
uses this round-robin task switching technique.

Simple C Program using RTX51

#include <rtx5ltny.h> /* Definitions for RTX51 Tiny */
int counter0;
int counterl;

job0 () _task 0 {

os_create_task (1); /* Mark task 1 as "ready" */
while (1) { /* Endless loop */
counter0++; /* Increment counter 0 */
}
}
jobl () _task 1 {
while (1) { /* Endless loop */
counterl++; /* Increment counter 1 */
}
}

RTXS51 starts the program with task 0 (assigned to job0). The function
os_create_task marks task 1 (assigned to jobl) as ready for execution. These
two functions are simple count loops. After the timeout period has been
completed, RTXS51 interrupts job0 and begins execution of jobl. This function
even reaches the timeout and the system continues with job0.

Getting Started and Creating Applications 137

The os_wait Function

The os_wait function provides a more efficient way to allocate the available
processor time to several tasks. os_wait interrupts the execution of the current
task and waits for the specified event. During the time in which a task waits for
an event, other tasks can be executed.

Wait for Timeout

RTX51 uses an 166/167 timer in order to generate cyclic interrupts (timer ticks).
The simplest event argument for os_wait is a timeout, where the currently
executing task is interrupted for the specified number of timer ticks. The
following uses timeouts for the time delay.

Program with os_wait Function

#include <rtxl66t.h> /* Definitions for RTX166 Tiny */

int counter0;
int counterl;

job0 () task 0 {
os_create_task (1);

while (1) {
counter0++; /* Increment counter 0 */
os _wait (K_TMO, 3, 0); /* Wait 3 timer ticks */
}
}

jobl () _task 1 {
while (1) {
counterl++; /* Increment counter 1 */
os wait (K _TMO, 5, 0); /* Wait 5 timer ticks */
}
}

This program is similar to the previous example with the exception that job0 is
interrupted with os_wait after counter0 has been incremented. RTX166 waits
three timer ticks until job0 is ready for execution again. During this time, jobl is
executed. This function also calls os_wait with a timeout of 5 ticks. The result:
counter0 is incremented every three ticks and counterl is incremented every five
timer ticks.

138 Chapter 8. RTX-51 Real-Time Operating System

Wait for Signal

Another event for os_wait is a signal. Signals are used for task coordination: if
a task waits with os_wait until another task issues a signal. If a signal was
previously sent, the task is immediately continued.

Program with Wait for Signal.

#include <rtxl66t.h> /* Definitions for RTX166 Tiny */

int counter0;
int counterl;

job0 () task 0 {
os_create_task (1);

while (1) {
if (++counter0 == 0) { /* On counter 0 overflow */
os_send signal (1); /* Send signal to task 1 */
}
}
}

jobl () _task 1 {
while (1) {
os wait (K _SIG, 0, 0); /* Wait for signal; no timeout */
counterl++; /* Increment counter 1 */

}
}

In this example, task 1 waits for a signal from task 0 and therefore processes the
overflow from counterO.

Preemptive Task Switching

The full version of RTX166 provides preemptive task switching. This feature is
not included in RTX166 Tiny. It is explained here to provide a complete
overview of multitasking concepts.

In the previous example, task 1 is not immediately started after a signal has
arrived, but only after a timeout occurs for task 0. If task 1 is defined with a
higher priority than task 0, by means of preemptive task switching, task 1 is
started immediately after the signal has arrived. The priority is specified in the
task definition (priority 0 is the default value).

Getting Started and Creating Applications

139

RTX51 Technical Data

RTX-51 Full

Description

Number of tasks 256; max. 19 tasks active

40 .. 46 bytes DATA
20 .. 200 bytes IDATA (user stack)
min. 650 bytes XDATA

6KB .. 8KB

timer O or timer 1
1000 .. 40000 cycles
< 50 cycles

70 .. 100 cycles (fast task)
180 .. 700 cycles (standard task)
depends on stack load

RAM requirements

Code requirements
Hardware requirements
System clock

Interrupt latency
Context switch time

Mailbox system 8 mailboxes with 8 integer entries

each
Memory pool system up to 16 memory pools

8 * 1 bit

Semaphores

RTX-51 Tiny

16

7 bytes DATA
3 * <task count> IDATA

900 bytes

timer O

1000 .. 65535 cycles
< 20 cycles

100 .. 700 cycles

depends on stack load

not available

not available

not available

Overview of RTX51 Routines

The following table lists some of the RTX-51 functions along with a brief

description and execution timing (for RTX-51 Full).

Function Description

isr_recv_message t
isr_send_message t Send a message (call from interrupt).
isr_send_signal
os_attach_interrupt + Assign task to interrupt source.
os_clear_signal Delete a previously sent signal.
os_create_task Move a task to execution queue.
os_create_pool t Define a memory pool.
os_delete_task
os_detach_interrupt + Remove interrupt assignment.
os_disable_isr t Disable 8051 hardware interrupts.
os_enable_isr t Enable 8051 hardware interrupts.
os_free_block t Return a block to a memory pool.
os_get_block 1 Get a block from a memory pool.
os_send_message T Send a message (call from task).

os_send_signal

Receive a message (call from interrupt).

Send a signal to a task (call from interrupt).

Remove a task from execution queue.

Send a signal to a task (call from tasks).

CPU Cycles ‘

71 (with message)
53

46

119

57

302

644 (size 20 * 10 bytes)
172

96

81

80

160

148

443 with task switch

408 with task switch
316 with fast task switch
71 without task switch

140 Chapter 8. RTX-51 Real-Time Operating System

Function Description CPU Cycles

os_send_token T Set a semaphore (call from task). 343 with fast task switch
94 without task switch

os_set_slice t Set the RTX-51 system clock time slice. 67

os_wait Wait for an event. 68 for pending signal

160 for pending message
1 These functions are available only in RTX-51 Full.

Additional debug and support functions in RTX-51 Full include the following:

Function Description ‘
oi_reset_int_mask Disables interrupt sources external to RTX-51.

oi_set_int_mask Enables interrupt sources external to RTX-51.

os_check_mailbox Returns information about the state of a specific mailbox.
os_check_mailboxes Returns information about the state of all mailboxes in the system.
os_check_pool Returns information about the blocks in a memory pool.

os_check_semaphore Returns information about the state of a specific semaphore.
os_check_semaphores Returns information about the state of all semaphores in the system.
os_check_task Returns information about a specific task.

os_check_tasks Returns information about all tasks in the system.

Getting Started and Creating Applications 141

CAN Functions

The CAN functions are available only with RTX-51 Full. CAN controllers
supported include the Philips 82C200 and 80C592 and the Intel 82526. More
CAN controllers are in preparation.

CAN Function Description ‘
can_bind_obj Bind an object to a task; task is started when object is received.
can_def_obj Define communication objects.

can_get_status Get CAN controller status.

can_hw_init Initialize CAN controller hardware.

can_read Directly read an object’s data.

can_receive Receive all unbound objects.

can_request Send a remote frame for the specified object.

can_send Send an object over the CAN bus.

can_start Start CAN communications.

can_stop Stop CAN communications.

can_task_create Create the CAN communication task.

can_unbind_obj Disconnect the binding between a task and an object.
can_wait Wait for reception of a bound object.

can_write Write new data to an object without sending it.

TRAFFIC: RTX-51 Tiny Example Program

The TRAFFIC example is a pedestrian traffic light controller that shows the
usage of multitasking RTX-51 Tiny Real-time operating system. During a user-
defined time interval, the traffic light is operating. Outside this time interval, the
yellow light flashes. If a pedestrian pushes the request button, the traffic light
goes immediately into walk state. Otherwise, the traffic light works
continuously.

Traffic Light Controller Commands

The serial commands that TRAFFIC supports are listed in the following table.
These commands are composed of ASCII text characters. All commands must
be terminated with a carriage return.

Command Serial Text Description

Display D Display clock, start, and ending times.
Time T hh:mm:ss Set the current time in 24 -hour format.

142 Chapter 8. RTX-51 Real-Time Operating System

Start S hh:mm:ss Set the starting time in 24-hour format. The traffic light controller
operates normally between the start and end times. Outside these
times, the yellow light flashes.

End E hh:mm:ss Set the ending time in 24 -hour format.

Software

The TRAFFIC application is composed of three files that can be found in the
\KEIL\C51\EXAMPLES\TRAFFIC folder.

TRAFFIC.C contains the traffic light controller program that is divided into the
following tasks:

e Task 0 init: initializes the serial interface and starts all other tasks. Task O
deletes itself since initialization is needed only once.

e Task1 command: isthe command processor for the traffic light controller.
This task controls and processes serial commands received.

e Task 2 clock: controls the time clock.

e Task 3 blinking: flashes the yellow light when the clock time is outside the
active time range.

e Task 4 lights: controls the traffic light phases while the clock time is in the
active time range (between the start and end times).

e Task 5 keyread: reads the pedestrian push button and sends a signal to the
task lights.

e Task 6 get_escape: If an ESC character is encountered in the serial stream
the command task gets a signal to terminate the display command.

SERIAL.C implements an interrupt driven serial interface. This file contains the
functions putchar and getkey. The high-level I/O functions printf and getline
call these basic I/O routines. The traffic light application will also operate
without using interrupt driven serial I/O. but will not perform as well.

GETLINE.C is the command line editor for characters received from the serial
port. This source file is also used by the MEASURE application.

Getting Started and Creating Applications 143

TRAFFIC Project

Open the TRAFFIC.UV2 project file that is
located in \KEIL\C51\EXAMPLES\TRAFFIC folder
with uVision2. The source files for the
TRAFFIC project will be shown in the
Project Window — Files page.

=l

=3 Small Model
523 Source Files

4] Traffic.c

Serial.c

! ¥] Getline.c

=23 Documentation

" [Files {5 Regs | U0 Books |

The RTX-51 Tiny Real-Time OS is selected under Options for Target.

Options for Target 'Small Model' 2]]

Target | output | Listing | 51 | 451

Clock (MHz): [12.0

temory Model ISmaII: wariahles in DATA

| L1 Locate | L51 Misc | Debug |
Intel 87C51FA

I= | W @rieeti B (I

= Use GnrehipAnithmetic W

Code Rom Size: ILarge B4K program = Use multile LETE regiEtars

Operating systerm: IRTX*51 Tiny Real-Time 05

Lefielle]

= Use GnrshipeEahi

Build the TRAFFIC program with Project - Build or the toolbar button.

@] Run the TRAFFIC Program

You can test TRAFFIC with the H[Name Valus
‘ol . - *P12* Fied 0
uVision2 simulator. P11 Yallow 1

= *P1.0* Green
A P1.3% Stop
= P1A* Walk

=

&

The watch variables shown on the right
allow you to view port status that drives
the lights.

[T AT ImT Locals i tiatch #1 J Watch #2 /i Gall Stack /

: Function Editor - Traffic.inc

The push_key
signal function
simulates the

Open | ew.. Save | Save As | Compile |

Cormpile Erors I j
PORT1 &= "0x20; /% set P1.5 to zero: Key Input =/ |

pedestrian
/% define a debug function for the pedestrian push button =/
pUSh key that signal void push_key (void) {
switches the PORT1 I= 0x20; /% set P3.0 ®/
. twatch (Clock=0.05); /= wait 50 msec =/
light system to PORTI & ~@x20; /% reset P3.0 x/

walk state.
This function
1s called with
the Push for
Walk toolbar

Thuttan

3

/% define a toolbar button to call push_key x/
define button “Push for Walk™, “push_key ()"

ki

-

4

Use Debug — Function Editor to open TRAFFIC.INC. This file is specified
under Options for Target — Debug — Initialization File and defines the
signal function push_key, the port initialization and the toolbar button.

144 Chapter 8. RTX-51 Real-Time Operating System

button.
Note: the VTREG symbol Clock is literalized with a back quote (°),

since there is a C function named clock in the TRAFFIC.C module.
Refer to “Literal Symbols” on page 109 for more information.

Now run the TRAFFIC application. Enable View — Periodic Window
Update to view the lights in the watch window during program execution.

g The Serial Window #1 displays the printf output and allows you to enter
the traffic light controller commands described in the table above.

Set the clock
t- t d f | with pedestrian self-service. Outside of this time range | =
1me outside o | the ye;low caution lamp i? blinking. |
the start/end + command -+ syntax ----- + function -----------------------oooo +

| Display | D | display times |
time interval | Time | T hhimm:ss | set clock time |

| Start | & hhimm:ss | set start time |
tO ﬂash the | End | E hhimm:ss | set end time |

. R B T B e e e e L e e +

yellow light.

Command: d

Start Time: 07:30:00 End Time: 18:30:00

Clock Time: 12:02:44 -

1] H 4

RTX Kernel Aware Debugging

A RTX application can be tested with the same methods and commands as
standard 8051 applications. When you select an Operating System under
Options for Target — Target, uVision2 enables additional debugging features:
a dialog lists the operating system status and with the _TaskRunning _debug
function you may stop program execution when a specific task is active.

The following section exemplifies RTX debugging with the TRAFFIC example.

% Stop program execution, reset the CPU and kill all breakpoints.

Getting Started and Creating Applications 145

4 An RTX-51 application can be tested in the same way as standard
applications. You may open source files, set break points and single step
'{_}l through the code. The TRAFFIC application starts with task 0 init.

F} B C:\Keil\C51\EXAMPLES\TRAFFIC\TRAFFIC.C M=
/
/% Task 0 "init’: Initialize
/ 1
void init (void) _task_ INIT { /% program execution start
serial_init (); /x initialize the serial i
os_create_task (CLOCK); /% start clock task
os_create_task (COMMAND); /= start command task
os_create_task (LIGHTS):; /% start lights task
os_create_task (KEYRERD); /% start keyread task
os_delete_task (INIT); /% stop init task (no long
2 4

0 uVision2 is completely kernel aware. You may display the task status
with the menu command Peripherals — RTX Tiny Tasklist.

TID ‘ Task Name | State ‘ Wait for Event | Sig | Tirner | Stack |
0 init Deleted 0 0x31 0x?F
1 command Funning 0 0x31 0x7F
2 clock Waiting Timeout 1] 0x2h OxF7?
3 hlinking Deleted 0 0x31 0xF9
4 lights W'aiting Signal & TimeOut 0 0x34 OxF3
5 keyread YWaiting Timeout 0 0x01 0xFE
[get_escape Feady 0 0x31 0xFD

The dialog RTXS51 Tiny Tasklist gives you the following information:

Heading Description ‘

TID task_id used in the definition of the task function.

Task Name name of the task function.

State task state of the function; explained in detail in the next table.

Wait for event the task is waiting for; the following events are possible (also in combination):
Event

Timeout: the task Timer is set to the duration is specified with the os_wait function
call. After the Timer decrements to zero, the task goes into Ready state.

Interval: the time interval specified with os_wait is added to the task Timer value.
After the Timer decrements to zero, the task goes into Ready state.

Signal: the os_wait function was called with K_SIG and the task waits for Sig = 1.
Sig status of the Signal bit that is assigned to this task.

Timer value of the Timer that is assigned to this task. The Timer value decrements with
every RTX system timer tick. If the Timer becomes zero and the task is waiting for
Timeout or Interval the task goes into Ready state.

Stack value of the stack pointer (SP) that is used when this task is Running.

146

Chapter 8. RTX-51 Real-Time Operating System

RTX-51 Tiny contains an efficient stack management that is explained in the "R7X51 Tiny" User’s
Guide, Chapter 5: RTX51 Tiny, Stack Management.
This manual provides detailed information about the Stack value.

State Task State of a RTX166 Task Function

Deleted Tasks that are not started are in the Deleted state.

Ready Tasks that are waiting for execution are in the Ready state. After the currently
Running task has finished processing, RTX starts the next task that is in the Ready
state.

Running The task currently being executed is in the Running state. Only one task is in the
Running state at a time.

Timeout Tasks that were interrupted by a round-robin timeout are in the Timeout state. This
state is equivalent to Ready; however, a round-robin task switch is marked due to
internal operating procedures.

Waiting Tasks that are waiting for an event are in the Waiting state. If the event occurs which

the task is waiting for, this task then enters the Ready state.

The Debug — Breakpoints... dialog allows you to define breakpoints that stop
the program execution only when the task specified in the TaskRunning
debug function argument is Running. Refer to “Predefined Functions” on page
122 for a detailed description of the TaskRunning debug function.

Breakpoints

Current Breakpoints:

5 00 (F) C-01 158, ‘signalon’. cme "

‘ 0|
Access————————————
Expression Isigna\nn I” Bead I~ Wirite
Count; I1 3: Bl
= - = Eyvies
Commanc: I_break_=_TaskRunning_ (lights) I 3‘ I Ohjec:

Define I Kill Selected | Kl &l | Close |

The breakpoint at the function signalon stops execution only
if lights is the current Running task.

Getting Started and Creating Applications 147

Chapter 9. Using on-chip Peripherals

There are a number of techniques you must know to create programs that utilize
the various on-chip peripherals and features of the 8051 family. Many of these
are described in this chapter. You may use the code examples provided here to
quickly get started working with the 8051.

This chapter will be added in one of the next manual revisions.

Getting Started and Creating Applications 149

Chapter 10. CPU and C Startup Code

The STARTUP.AS51 file contains the startup code for a C51 target program. This
source file is located in the LIB directory. Include a copy of this file in each
8051 project that needs custom startup code.

This code is executed immediately upon reset of the target system and optionally
performs the following operations, in order:

m Clears internal data memory

m Clears external data memory

m Clears paged external data memory

m Initializes the small model reentrant stack and pointer

m Initializes the large model reentrant stack and pointer

m Initializes the compact model reentrant stack and pointer

m Initializes the 8051 hardware stack pointer

m Transfers control to the main C function

The STARTUP.AS1 file provides you with assembly constants that you may
change to control the actions taken at startup. These are defined in the following
table.

Constant Name Description ‘

IDATALEN Indicates the number of bytes of idata that are to be initialized to 0.
The default is 80h because most 8051 derivatives contain at least
128 bytes of internal data memory. Use a value of 100h for the
8052 and other derivatives that have 256 bytes of internal data

memory.

XDATASTART Specifies the xdata address to start initializing to 0.

XDATALEN Indicates the number of bytes of xdata to be initialized to 0. The
default is 0.

PDATASTART Specifies the pdata address to start initializing to 0.

PDATALEN Indicates the number of bytes of pdata to be initialized to 0. The
default is 0.

IBPSTACK Indicates whether or not the small model reentrant stack pointer

(?C_IBP) should be initialized. A value of 1 causes this pointer to
be initialized. A value of 0 prevents initialization of this pointer. The
default is 0.

150

Chapter 10. CPU and C Startup Code

Constant Name

IBPSTACKTOP

Description ‘

Specifies the top start address of the small model reentrant stack
area. The default is OxFF in idata memory.

C51 does not check to see if the stack area available satisfies the
requirements of the applications. It is your responsibility to perform
such a test.

XBPSTACK

XBPSTACKTOP

PBPSTACK

PBPSTACKTOP

PPAGEENABLE

PPAGE

Indicates whether or not the large model reentrant stack pointer
(?C_XBP) should be initialized. A value of 1 causes this pointer to
be initialized. A value of 0 prevents initialization of this pointer. The
default is 0.

Specifies the top start address of the large model reentrant stack
area. The default is OXFFFF in xdata memory.

C51 does not check to see if the available stack area satisfies the
requirements of the applications. It is your responsibility to perform
such a test.

Indicates whether the compact model reentrant stack pointer
(?C_PBP) should be initialized. A value of 1 causes this pointer to
be initialized. A value of 0 prevents initialization of this pointer. The
default is 0.

Specifies the top start address of the compact model reentrant stack
area. The default is OxFF in pdata memory.

C51 does not check to see if the available stack area satisfies the
requirements of the applications. It is your responsibility to perform
such a test.

Enables (a value of 1) or disables (a value of 0) the initialization of
port 2 of the 8051 device. The defaultis 0. The addressing of port 2
allows the mapping of 256 byte variable memory in any arbitrary
xdata page.

Specifies the value to write to Port 2 of the 8051 for pdata memory
access. This value represents the xdata memory page to use for
pdata. This is the upper 8 bits of the absolute address range to use
for pdata.

For example, if the pdata area begins at address 1000h (page 10h)
in the xdata memory, PPAGEENABLE should be set to 1, and
PPAGE should be set to 10h. The BL51 Linker/Locator must

contain a value between 1000h and 10FFh in the PDATA control
directive. For example:

BL51 <input modules> PDATA (1050H)

Neither BL51 nor C51 checks to see if the PDATA control directive
and the PPAGE assembler constant are correctly specified. You
must ensure that these parameters contain suitable values.

Getting Started and Creating Applications 151

Chapter 11. Using Monitor-51

This chapter will be added in one of the next manual revisions.

Getting Started and Creating Applications 153

Chapter 12. Command Reference

This chapter briefly describes the commands and directives for the Keil 8051
development tools. Commands and directives are listed in a tabular format along
with a description.

NOTE
Underlined characters denote the abbreviation for the particular command or
directive.

MVision 2 Command Line Invocation

The puVision2 IDE can directly execute operations on a project when it is called
from a command line. The command line syntax is as follows:

uv2 [command] [projectfile]

command is one of the following commands. If no command is specified
uVision2 opens the project file in interactive Build Mode.

projectfile 1S the name of a project file. wVision2 project files have the
extension .UV2. If no project file is specify, uVision2 opens the
last project file used.

Command Description

-b Build the project and exit after the build process is complete.

-d Start pVision2 Debugging Mode. You can use this command together with a
Debug Initialization File to execute automated test procedures. pVision2 will
exit after debugging is completed with the EXIT command or stop debug session.
Example:

UV2 -d PROJECT1.UV2

-r Re-translate the project and exit after the build process is complete.

-t targetname Open the project and set the specified target as current target. This option can
be used in combination with other pVision2 commands. Example:
UV2 -b PROJECT1.UV2 -t"C1l67CR Board"
builds the target “C167CR Board” as defined in the PROJECT1.UV2 file. If the —t
command option is not given pVision2 uses the target which was set as current
target in the last project session.

-0 outputfile copy output of the Output Window — Build page to the specified file. Example:
UV2 -r PROJECT1.UV2 -o"listmake.prn"

154 Chapter 12. Command Reference

A51 | A251 Macro Assembler Directives

Invocation: A51 sourcefile [directives]
A251 @commandfile

sourcefile is the name of an assembler source file.

commandfile is the name of a file which contains a complete command line
for the assembler including a sourcefile and directives.

directives are control parameters described in the following table.

A51/ A251 Controls Meaning ‘

CASE t Enables case sensitive symbol names.

DATE(date) Places date string in header (9 characters maximum).

DEBUG Includes debugging symbol information in the object file.

ERRORPRINT][(filename)] Outputs error messages to filename.

INCLUDE(filename) Includes the contents of filename in the assembly.

MACRO Enables standard macro processing.

MODBIN * Selects 251 binary mode (default).

MODSRC ¢ Selects 251 source mode.

MPL Enables Intel-style macro processing.

NOAMAKE Excludes AutoMAKE information from the object file.

NOCOND Excludes unassembled conditional assembly code from the
listing file.

NOGEN Disables macro expansions in the listing file.

NOLINES Excludes line number information from the object file.

NOLIST Excludes the assembler source code from the listing file.

NOMACRO Disables standard macro processing.

NOMOD251 Disables enhanced 251 instruction set.

NOMOD51 t Disables predefined 8051-specific special function registers.

NOSYMBOLS Excludes the symbol table from the listing file.

NOSYMLIST Excludes symbol definitions from the listing file.

OBJECT](filename)|, NOOBJECT Enables or_disables. object' file output. The object file is
saved as filename if specified.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) fS'Iets maximum number of characters in each line of listing
ile.

PRINT](filename)|, NOPRINT Enables or_disables. Iisting.f.ile output. The listing file is
saved as filename if specified.

REGISTERBANK(num, ...), Indicates that one or more registerbanks are used or

NOREGISTERBANK indicates that no register banks are used.

RESET (symbol, ...) Assigns a value of 0000h to the specified symbols.

SET (symbol, ...) Assigns a value of OFFFFh to the specified symbols.

Getting Started and Creating Applications 155

A51/ A251 Controls Meaning
TITLE(title) Includes title in the listing file header.
XREF Includes a symbol cross reference listing in the listing file.

T These controls are available only in the A51 macro assembler.
1 These controls are available only in A251 macro assembler.

C51/C251 Compiler

Invocation: C51 sourcefile [directives]]

C251 sourcefile |directives]|

C51 @commandfile

C251 @commandfile

where
sourcefile is the name of a C source file.

commandfile is the name of a file which contains a complete command line
for the compiler including a sourcefile and directives. You
may use a command file to make compiling a source file easier
or when you have more directives than fit on the command line.

directives are control parameters which are described in the following

table.

C51/ C251 Controls Meaning

CODE Includes an assembly listing in the listing file.

COMPACT Selects the COMPACT memory model.

DEBUG Includes debugging information in the object file.

DEFINE Defines preprocessor names on the command line.

ELOATEUZZY Specifies the number of bits rounded during floating-point
comparisons.

HOLD(d,n,x) t Specifies size limits for variables placed in data (d),
near (n), and xdata (x) memory areas.

INTERVAL T Specifies the interval for interrupt vectors.

INTR2 Saves upper program counter byte and PSW1 in interrupt
functions.

INTVECTOR(n), NOINTVECTOR Specifies offset for interrupt table, using n, or excludes
interrupt vectors from the object file.

LARGE Selects the LARGE memory model.

LISTINCLUDE Includes the contents of include files in the listing file.

MAXARGS(n) Specifies the number of bytes reserved for variable length
argument lists.

156

Chapter 12. Command Reference

C51/ C251 Controls
MOD517 t

MODBIN
MODDP2 1

MODSRC 1
NOAMAKE
NOAREGS

NOCOND
NOEXTEND

NOINTPROMOTE
NOREGPARMS t

OBJECT](filename)], NOOBJECT

OBJECTEXTEND t
OPTIMIZE
ORDER

PAGELENGTH(n)
PAGEWIDTH(n)

PARMS1

Meaning ‘
Enables support for the additional hardware of the

Siemens 80C517 and its derivatives.

Generates 251 binary mode code.

Enables support for the additional hardware of Dallas
Semiconductor 80C320/520/530 and the AMD 80C521.

Generates 251 source mode code.
Excludes AutoMAKE information from the object file.

Disables absolute register addressing using ARn
instructions.

Excludes skipped conditional code from the listing file.

Disables 8051/251 extensions and processes only ANSI C
constructs.

Disables ANSI integer promotion rules.
Disables passing parameters in registers.

Enables or disables object file output. The object file is
saved as filename if specified.

Includes additional variable type information in the object
file.

Specifies the level of optimization performed by the
compiler.

Locates variables in memory in the same order in which
they are declared in the source file.

Sets maximum number of lines in each page of listing file.

Sets maximum number of characters in each line of listing
file.

Uses parameter passing conventions of the C51 compiler.

PREPRINT]|(filename)]

PRINT|(filename)], NOPRINT

REGEILE(filename)
REGISTERBANK

ROM({SMALL|COMPACT|LARGE})
SMALL

SRC

SYMBOLS

WARNINGLEVEL(n)

Produces a preprocessor listing file with all macros
expanded. The preprocessor listing file is saved as
filename if specified.

Enables or disables listing file output. The listing file is
saved as filename if specified.

Specifies the name of the generated file to contain register
usage information.

Selects the register bank to use functions in the source
file.

Controls generation of AJMP and ACALL instructions.
Selects the SMALL memory model.

Creates an assembly source file instead of an object file.
Includes a list of the symbols used in the listing file.
Controls the types and severity of warnings generated.

1 These controls are available only in the C51 compiler.
1 These controls are available only in C251 compiler.

Getting Started and Creating Applications

157

L51/BL51 Linker/Locator

Invocation: BL51 inputlist [TO outputfile| [directives]|
L51 inputlist [TO outputfile| [directives]|
BL51 @commandfile
L51 @commandfile

where

inputlist is a list of the object files and libraries, separated by commas,
that the linker includes in the final 8051 application.

outputfile is the name of the absolute object module the linker creates.

commandfile is the name of a file which contains a complete command line
for the linker/locator including an inputlist and directives.
You may use a command file to make linking your application
easier or when you have more input files or more directives than
fit on the command line.

directives are control parameters which are described in the following

table.

BL51 Controls Meaning

BANKAREA i Specifies the address range where the code banks are
located.

BANKXx Specifies the starting address, segments, and object
modules for code banks 0 to 31.

BIT Locates and orders BIT segments.

CODE Locates and orders CODE segments.

COMMON i Specifies the starting address, segments, and object
modules to place in the common bank. This directive is
essentially the same as the CODE directive.

DATA Locates and orders DATA segments.

IDATA Locates and orders IDATA segments.

IXREF Includes a cross reference report in the listing file.

NAME Specifies a module name for the object file.

NOAMAKE Excludes AutoMAKE information from the object file.

NODEBUGLINES Excludes line number information from the object file.

NODEBUGPUBLICS Excludes public symbol information from the object file.

NODEBUGSYMBOLS Excludes local symbol information from the object file.

NODEFAULTLIBRARY Excludes modules from the run-time libraries.

NOLINES Excludes line number information from the listing file.

NOMAP Excludes memory map information from the listing file.

158 Chapter 12. Command Reference

BL51 Controls Meaning

NOOVERLAY Prevents overlaying or overlapping local BIT and DATA
segments.

NOPUBLICS Excludes public symbol information from the listing file.

NOSYMBOLS Excludes local symbol information from the listing file.

OVERLAY Directs the linker to overlay local data & bit segments and
lets you change references between segments.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) fS.Iets maximum number of characters in each line of listing
ile.

PDATA Specifies the starting address for PDATA segments.

PRECEDE Locates and orders segments that should precede all others
in the internal data memory.

PRINT Specifies the name of the listing file.

RAMSIZE Specifies the size of the on-chip data memory.

REGEILE(filename) Specifies the name of the generated file to contain register
usage information.

RTX51 £ Includes support for the RTX-51 full real-time kernel.

RTX51TINY Includes support for the RTX-51 tiny real-time kernel.

STACK Locates and orders STACK segments.

XDATA Locates and orders XDATA segments.

1 These controls are available only in the BL51 code banking linker/locator.

L251 Linker/Locator

Invocation: L251 inputlist |[TO outputfile| [directives]

L251 @commandfile

where

inputlist is a list of the object files and libraries, separated by commas,
that the linker includes in the final 251 application.

outputfile is the name of the absolute object module the linker creates.

commandfile is the name of a file which contains a complete command line
for the linker/locator including an inputlist and directives.
You may use a command file to make linking your application
easier or when you have more input files or more directives than
fit on the command line.

directives are control parameters which are described in the following
table.

Getting Started and Creating Applications

159

L251 Controls

Meaning

ASSIGN Defines public symbols on the command line.

CLASSES Specifies a physical address range for segments in a
memory class.

IXREF Includes a cross reference report in the listing file.

NAME Specifies a module name for the object file.

NOAMAKE Excludes AutoMAKE information from the object file.

NOCOMMENTS Excludes comment information from the listing file and the
object file.

NODEFAULTLIBRARY Excludes modules from the run-time libraries.

NOLINES Excludes line number information from the listing file and
object file.

NOMAP Excludes memory map information from the listing file.

NOOVERLAY Prevents overlaying or overlapping local BIT and DATA
segments.

NOPUBLICS Excludes public symbol information from the listing file and
the object file.

NOSYMBOLS Excludes local symbol information from the listing file.

NOTYPES Excludes type information from the listing file and the object
file.

OBJECTCONTROLS Excludes specific debugging information from the object file.
Subcontrols must be specified in parentheses. See
NOCOMMENTS, NOLINES, NOPUBLICS, NOSYMBOLS,
and PURGE.

OVERLAY Directs the linker to overlay local data & bit segments and
lets you change references between segments.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n)

PRINT
PRINTCONTROLS

PURGE

RAMSIZE
REGEILE(filename)

RESERVE

RTX251
RTX251TINY
SEGMENTS

SEGSIZE

Sets maximum number of characters in each line of listing
file.

Specifies the name of the listing file.

Excludes specific debugging information from the listing file.
Subcontrols must be specified in parentheses. See
NOCOMMENTS, NOLINES, NOPUBLICS, NOSYMBOLS,
and PURGE.

Excludes all debugging information from the listing file and
the object file.

Specifies the size of the on-chip data memory.

Specifies the name of the generated file to contain register
usage information.

Reserves memory ranges and prevents the linker from using
these memory areas.

Includes support for the RTX-251 full real-time kernel.
Includes support for the RTX-251 tiny real-time kernel.

Defines physical memory addresses and orders for specified
segments.

Specifies memory space used by a segment.

160 Chapter 12. Command Reference

L251 Controls Meaning

WARNINGLEVEL(n) Controls the types and severity of warnings generated.

Getting Started and Creating Applications 161

LIB51 / L251 Library Manager Commands

The LIB51 / LIB251 Library Manager lets you create and maintain library files
of your 8051 /251 object modules. Invoke the library manager using the
following command:

LIB51 [command]]
LIB251 @commandfile

command is one of the following commands. If no command is specified
LIB51/LIB251 enters an interactive command mode.

commandfile is the name of a file which contains a complete command line
for the library manager. The command file includes a single
command that is executed by LIB51. You may use a command
file to generate a large library with at once.

LIB51 Command Description ‘

ADD Adds an object module to the library file. For example,
LIB51 ADD GOODCODE.OBJ TO MYLIB.LIB

adds the GOODCODE.OBJ object module to MYLIB.LIB.

CREATE Creates a new library file. For example,
LIB251 CREATE MYLIB.LIB

creates a new library file named MYLIB.LIB.

DELETE Removes an object module from the library file. For example,
LIB51 DELETE MYLIB.LIB (GOODCODE)

removes the GOODCODE module from MYLIB.LIB.

EXTRACT Extracts an object module from the library file. For example,
LIB251 EXTRACT MYLIB.LIB (GOODCODE) TO GOOD.OBJ

copies the GOODCODE module to the object file GOOD.OBJ.

EXIT Exits the library manager interactive mode.

HELP Displays help information for the library manager.

LIST Lists the module and public symbol information stored in the library file.
For example,

LIB251 LIST MYLIB.LIB TO MYLIB.LST PUBLICS
generates a listing file (named MYLIB.LST) that contains the module
names stored in the MYLIB.LIB library file. The PUBLICS directive
specifies that public symbols are also included in the listing.

REPLACE Replaces an existing object module to the library file. For example,
LIB51 REPLACE GOODCODE.OBJ IN MYLIB.LIB
replaces the GOODCODE.OBJ object module in MYLIB.LIB. Note that
Replace will add GOODCODE.OBJ to the library if it does not exists.

TRANSFER Generates a complete new library and adds object modules. For example,
LIB251 TRANSFER FILE1l.OBJ, FILE2.0BJ TO MYLIB.LIB
deletes the existing library MYLIB.LIB, re-creates it and adds the object
modules FILE1.0BJ and FILE2.0BJ to that library.

162

Chapter 12. Command Reference

OC51 Banked Object File Converter

Invocation:

where

banked file

OC51 banked file

is the name of a banked object file.

OH51 Object-Hex Converter

Invocation:

where
absfile

hexfile

OH51 absfile [HEXFILE (hexfile)]

is the name of an absolute object file.

is the name of the Intel HEX file to create.

OH251 Object-Hex Converter

Invocation:

where
absfile
hexfile
HEX
H386

RANGE

start

end

OH251 absfile [HEXFILE (hexfile)| [{HEX|H386}]
[RANGE (start-end) |

is the name of an absolute object file.

is the name of the HEX file to create.

specifies that a standard Intel HEX file is created.
specifies that an Intel HEX-386 file is created.

specifies the address range of data in the absfile to convert and
store in the HEX file. The default range is 0OxFF0000 to
OxFFFFFEF.

specifies the starting address of the range. This address must be
entered in C hexadecimal notation, for example: oxFro000.

specifies the ending address of the range. This address must be
entered in C hexadecimal notation, for example: 0xFFFFFF.

Getting Started and Creating Applications 163

Getting Started and Creating Applications

165

Index

$

$ system variablecccoevenrnennn. 101
*

FOPT file v, 66
FUV2 e, 66
_break system variable 101
_RBYTE debug function.......... 124,130
_RDOUBLE debug function 130
_RDOUBLEdebug function 125
_RDWORD debug function 124,130
_RFLOAT debug function........ 125,130
_RWORD debug function........ 124,130
_TaskRunning debug function....... 124
_WBYTE debug function......... 125,131

_WDOUBLE debug function ... 126,131
_WDWORD debug function 126,131

_WFLOAT debug function....... 126,131

_WWORD debug function........ 125,131

1)

pVision2 Debuggercccceevveeeenenne. 81

pVision2 IDEccoccvevveiene 6,15,48
Command line parameters 175
Debug Options.........ccevverevennnnne. 90
Menu Commands............cccueenee.e. 16
OPLioNS....cccvveeeeieeeeeeieeeie e 52

Shortcutsveeeeeveeeeeeeeeeeeee e, 16

Toolbarscceeeveevveeereeiieeene. 16
TO0OIDOX ...evvievieeiieecieeeiee e 88
A
A166 macro assembler....................... 38
AS51 macro assembler.............cceeennennn. 9
Access BreaK.........cooeeevvieeiieiiieennn. 84
Add command
library managerc..c.cceeeueenee. 183
Additional items, document
CONVENLIONScvveeveeeereeeereeeereeeereenene iv
AlICN...cviiiiieccie e 31
ANSIC oo 138
F:TS] 11 DTSR PR 31
Assembler Instructions....................... 82
Assembler Kitccceoeeeviieeiieniienneen, 9
ASSIStANCE ..veevvieierieeiiiecieeeree e 5
B
Binary constants............cccceevveevernnenne. 99
Bit addressescccoeevvvevveeeiiiennreenne. 111
BL51 code banking
linker/1ocator........c..cccvveeveeiveennnens 40
Code Banking..........cccoeevvrverennnne. 40
Common Areacccceeeeeveeeenveennn. 41
Data Address Management........... 40
Executing Functions in Other
Banks........ccoeeeviiiiieeieecieee 41
Bold capital text, use ofc.ce..... iv
Braces, use ofooovvviiiiiiiieiieee iv
breakocvveeveeiiiieieeeeee e 119
Breakpoint Commands....................... 96

166 Index
Breakpoints........ccoeveeeveriieciieieeieeens 83 COMPACT ..ot 25
Access Break.........ccoocvevveiiiennnnen. 84 Comparison chartccccveveveeeennnnne. 9
Conditional..........ccceeveviverreennnnen. 84 Compiler Kitccvvevevienierieiieieee 8
Execution Break...........cccvenenee. 84 conditional assemblyccoceenen. 38
Build Process.....c..cocveeievienencnennne 71 Conditional Breakcccceceeveeennene 84
Build Project......ccccccevevevienieiieieeene 53 Configuration
CPU e 171
C t00] OPLIONS ..c..evveereniiiireeeieeieeane 56
Constant EXpressionsc..ceceeeeeueene. 98
Cstartup code ..o, 171 CONSLANLSveveeveveeeeiereee e 98
CS1 C cOMPIlEr...covoiiis 22 Binarycoooeveeveveeeeeeeeeeeen 99
Language EXtensions.................. 23 Characterccoeeveveveveeeenennne. 100
C51 Compiler Decimal ..o, 99
Code Optimizations..................... 33 Floating-pointcccoeveveuenenee. 99
Compact modelcooooovwvnveee. 25 HEX .ot 99
Data TYPes .cvvvvvvvvsssssssssssssssssis 23 O E 99
LNV ih T S — 34 SHANG oo 100
Function Return Values................ 30 CONEINUE ... 119
Generic Pointers.........ccccocevenennene 27 Control Directives
Interfacing to Assembly 31 HPragma........ocovvvevereneeereeeeenenennn, 36
Interfacing to PL/M-51ccoceoee.. 31 Copy Tool Settings.........ccceveeveverrnnnnns 74
Interrupt FUnctions.............c...c..... 29 Correct Syntax errorsccveveveuenen. 53
Lgrge model: """""""""""""""""""" 26 Counter Clock Inputs 115
Library ROUtnes.ccoocveree. 35 Courier typeface, use Of...........co......... iv
Memory Models............cooocin 25 CPU driver symbols............cocoevene.. 102
Memory Specific Pointers............ 27 CPU initialization....................cccc... 171
Memory Types. 24 CPU pin register................. See VTREG
Parameter Passingcc...... 29 CPU ReEIStETSvvevereveeeeereeeeveaaa 87
POINtErs ...oovvvvecieeieeeieee e 27 CPU Simulation. ... oo 81
Real-Time Operating System Create a Library........cococecevvevririeienennnas 73
Support.......... e 30 Create a Project File.........ccocoeveveunene. 48
Reentrant Functionsc.......... 28 Create command
Register Optimizing 30 library manager...............c.c......... 183
Small modeloovvvrviinrinnnnn. 25 Create HEX Fil€......ccoovveveveriirernnnn, 53
CAST e 8 Custom Translator ... 78
CASE .envreneeenreenreere et eereeine s st e 119 cycles system variable..................... 101
Changes to the documentation.............. 2
Character constant escape
D
SEQUEINCE....eeuveeereenireerireenireesreenane 100
Character constants.................c....... 100 Data Types ..ccceeeveeereeiniieieeiieesieene 70
Choices, document conventions.......... iv Debug Commands............ccoeuee.... 19,95
108 MEMOTY ...oeeeiiiiiieeiieeieeee e 95
Code Coverage.........covevververveneeennennn. 92 Program Execution........................ 96
COM Port for Serial I/O 115 Debug Commands from File 116
Command Input from File................ 116 Debug functionsc.cceceeeeueee 119,138
Command reference..........cccceenneeee. 175 RBYTE...cooiiieeee 124,130
LIB51/LIB251 library _RDOUBLE........cccocvunenee. 125,130
MANAZETveereereneeenreereeereeenens 183 _RDWORD.......ccoouverenene 124,130

Getting Started and Creating Applications 167
_RFLOAT ..ot 130 O e 119
RFOAT ..o, 125 Document conventions..........c...c..c..... v
_RWORDcccoeiiinn. 124,130 Documentation changescc.......... 2
TaskRunning................... 124,130 Double brackets, use of.........c.cccccc.... v
_WBYTE. ..., 125,131 dScope Differences......c...cccceeeueeunenee 139
_WDOUBLEcccecuaniee. 126,131
_WDWORD.......ccocveenne 126,131 E

WFLOAT......cooiiieeeee 126,131
_WWORD 125’ 131 Easy-Case ... 63
EXGC 122,126 Edit Menuccoovvvviiiiiiiieieeees 17
P L) DO 122,127 Editor Commandsccccceeeveenenn. 17
P SO 122,127 EKS51 evaluation Kitcoeeveeeriveennenns 3
GEtIONG oo, 123,127 Ellipses, use Ofceeecvvveviieeciieiiieeiens iv
MEMSEt oo 123,127 Ellipses, vertical, use ofc........ v
printf 123,127 RIS .uveeeieeiie e 119
rand ... 123,128 eNdaSIMoovvviieeieeiieeeeee e 31
AW 123,128 Escape sequenceccccvvvvveee 100
Debug MenU........ccveevreeenne 19,82.86 Evaluation board..........ccccvvvveeeennnn. 173
Debug MOde ...,) Evaluation Kit.......ccccccveevveeneeenirenneens 3
Debug Output Evaluation Users........ccceevveeeveenveennenns 3
protocol file..........cocovvveveieennns 117 Examples of expressions................. 112
DEDUZEET ..., 81 Exclude from Link Run..........c......... S5
Debugger capabilities....................... 114 exec d@bug function........co........ 122,126
Decimal constants. ... 99 Exs:cu‘uon Break.....ccoooenininieienn. 84
Delete command Exit command

library managerc......... 183 llb?ary MANAZET w.vovvrnrneniinnnes 184
Development cycleovvvrrereern. 6 Experlepced USETS tovvveeereeneveenereeneveeenes 3

Development toolS.........c.cccocvevevvnnnnne. 15 Expression components
Device Database..........ccccuevevererennnee. 72 Bit addressescoooee. 97,111
Directives Constants........ceeveereereerneeneenne 97,98
LIB51/LIB251 library CPU driver symbols 102
MANAZETovvevereeeeeerreeeeennns 183 Line numbers.............cooocoeeve. 98,110
Directory Structure............cocoevvevennee. 13 Operators...........ocouvvrviinniens 98,111
Disassembly Window 82 Program variables................. 98,107
Displayed text, document SFRS ..vieivieiierieeeieeeie e 102
CONVENtIONSvoveveveececerecee e iv Special function registers 102

168 Index
Symbols......ccceevierieriieiieienns 98,107 Getting started immediately.................. 2
System variables.................... 98,101 Global Register Optimization............. 67
Type specifications 98,111 OO cevieniieiiete ettt 119
Variables.......cccoeveerreieenennen. 98,107 Group Attributes........cceeeveeeververeeennnns 55
VTREGS......ccooieiieiieieeieeieins 102 Group specific Options

Expression examples.............ccoeeuene. 112 for Groupsccccevverevennnne 55,57,75
EXPressions....c..ccveeveeeeneeeneeeneeeeeannnns 97
Extract command H
library managerccoceveeuene 183
Hardware requirementsc......... 11
F Help .o 5
Help command
Feature check list.......ccocvveverienirennnne, 9 library manager..............cccveneenn. 184
File Attributesccoecveevenvenireiennnnns 55 Help Menu.......cccoceevvenieiieiieieeeeeen 21
File Code for Tool Parameters........... 60 HEX constants.......c..ccocceeveeveenveneennen. 99
File Commands..........c.ccceeverreeeennnne 17 HEX File c..ooeviiiiiiiiniienccceeee 53
File EXtensions...........ccceceeverveeeennens 79
File MenU.......ccccceeveeeeiininencnenene 17 1
File specific Options................ 55,57,75 X X
Filename, document conventions........ iv I/O Port simulation..........c......ccu....... 114
Files GrOUPS.......o.vveveeeeeereeeeeeerneen 54 yO POTLS o, 105
Find in Files ..oooooooooeeecccccoovvoreeeeees 58 if 119
Floating-point constants..................... 99 Illegal Memory AcCesses 116
Folder for Listing Filesccoooo...... 72 Import pVisionl Projects.................. 70
Folder for Object Files..........cccc.c....... 72 Include specific Library Modules
FRS L oo 9 S 77
Fully qualified symbols.................... 108 Input from Filecoovervenieirens 116
Function classes Installing the softwareccocuee.... 11
Predefined functions................... 121 interrupt.... e 29
Signal functions............coooovveee.... 121 Interrupt §1mu1at10n 115
User functions ... 121 Introduction.........cccecevevereeneenieiienns 1
Function Classes ... 121 Italicized text, use ofccoecvveveeeeennnne v
Functions itrace system variable 102
pVision2 Debug Functions 119
Classes.....cceremenenieneeienienennenne 121 K
Creatlpg 119 Kernel Aware Debugging......... 118,165
InvoKingccccvevveviereieiieieenene 121 Kernel A
: ernel Awareness
Predefined debug functions........ 122 for Real-Time Operatin
SHENAL .o 134 vt perating 166
USET oo 132 Koy
ey names, document
CONVENLIONS.eeeeereeieniienereereeereneeennes v
G Key Sequence for Tool
General commands. ... 96 Parameters.........cocceevvieenieiniieenienns 60
getdbl debug function 122,127 K.eyboard Shortcuts 117
getint debug function 122,127 Kit comparison.........cceeeeevveenveennennnen. 9
getlong debug function 123,127

Getting helpocooevveviecierieieeeeee, 5

Getting Started and Creating Applications 169
L Memory Windowccceeeveeevveennen. 88
memset debug function 123,127
LARGE ... 25,26 MlCI‘OSOft Sourcesafe ''''''''''''''''''''''''' 64
Last mmut.e changesccceevverveennnnn. 2 MKS Source INterityooovvvveen.... 64
Latch Devices Module names.............ccceveveerereens. 107
simulation of ~........cocooooviiinnins 115 MONItOr-51 ..o 173
LIB166 library manager 44 MPL MaCIOSovverereeeeeeeeeeerrenes 38
LIB51 /L251 library manager
Commandscceceevereeneennene 183 N
Librarycccceecveeveeeeieeeieeeieeeiees 76,77
library manager Naming conventions for symbols..... 107
Add command.........c.cceceenrennn. 183 New Projectccceevveeeveenieeeieeeveene 48
Create commandccccoeu..e. 183 NEW USCIS...eeeeiiieiieieeieeieeieeiee s neen 3
Delete commandcc.c...... 183 Non-qualified symbols..................... 109
Exit command.........c.cccceenrnen. 184 NOOVERLAYoooiiiiiiinieieeees 40
Extract command 183 NOREGPARMSoovvviiiiiinnns 29,31
Help command............c..ccuuenee. 184
List commandccccceveeernnene 184)
Replace command...................... 184
Transfer commando.ooo...... 184 Object FileS.....oooveevieniieiieeiiieeiens 72
Line numbersccccceeeeveinenennene 110 OBJECTEXTEND......ooovvviiiiininins 34
List command OC51 Banked Object File
library managercoo...... 184 CONVEItET......vveieeeeieeeeiiee e 45
Listing Filescoeveveveverereiienennnn 72 Octal ConStantsooevvvvirriiinniinns 99
108,109 OHS51 Object-Hex Converter 45
108,109 (01 1 2 S 32,34,35
Load Memory Contents.................... 117 Omitted t?Xt’ document .
Locate Segments...............coo....... 57,74 CONVENLIONS ...evvuniiiiiieiiieeeiiieeeeaanns v
(013]5) ;110 ¢SSR 111
M Optimum Code.......ccceevvvrereeeireeinenns 67
Optional items, document
Macro Processing Language.............. 38 CONVENLIONS ...euvveneeenieeieriieniceieenieane v
Macros - standard macros.................. 38 Options
Manual topicscvveevveerireeriieeieeeieeenne 2 for Filescoovvvvvviiviieinnnnnn. 55,57,75
Memory Map.....cccoeeeeeeiveeceeeniieennene 93 for Groupscccccveeeveeeneens 55,57,75
Memory Model..........ccceevvvennnnns 52,67 0S-Walt..eeiveeeieeeieeeieeeireereeeeeeeeeeas 159
Memory TYPe ...ccveeevveerieeiieeeieens 52,67 Output Window........ceecveeveeecnreennenns 53

170 Index
OVERLAY ..o 40 Q
P Qualified symbols.........ccceeeverrennnnne. 108
Parameters for external tools 60 R
Part numberscccceeeveveievienieee 8))
PC-Lintooovieieeieiiecieeeeeeeene 62 radix system variable.................oo.... 102
Performance Analyzer 91 rand debug function................... 123,128
Peripherals Menu.............c.ccoovevnnn... 20 Read only attributeooooovevvvvrvnne 55
PKST oo 8 Real-time operating system................. 9
I 105 TECMMIANL - vcorvvvves v 28,29
Predefined debug functions............. 122 REGPARMSccoooiieieieeeeeee 29
11:3) S 124,130 Replace command
_RDOUBLE 125.130 hbrary manager.........coceevevenennnnnns 184
_RDWORD 124’ 130 Requesting ASSISANCE ..., 5
RFLOAT oo ’ 130 Requirements...........ceccveveveceeerenieennenn 11
REOAT oo, 125 Round-Robin..........cccccevveeeveeecenne. 158
_RWORD 124.130 RS-232 POILS oo 106
TaskRUNNING....occccrrvere 124,130 RTX166
WBYTE oo 125,131 Routines.......cccceveeeiveiiiiiiiieeeeenn, 161
_WDOUBLE 126.131 Technical Data..........cccoouvveeeenn.. 161
:WDWORD 126,131 RTXSI.................... 9,157
WELOAT oo 126.131 Status Information 166
_WWORD 125.131 Task LiSt.....ocoovvveeeeeneeeeeiieeeennee. 166
EXEC ovrrverrsrerrneesnernenes 122,126 RTX-51 Application Example
a1 I 122,127 TRAFFIC. .o 162
T S 122,127 RTX51 Tiny
GEtlONg.ovvveeeeeeeeeeeeeee 123,127 Introductionccceeevevveninennen. 157
B 123,127 Run Programcccceeviiinieniiinnenns 86
printfi.......ccooooiniiiiien, 123,127
TAN oo 123,128 S
twatCh.....coooeiieeeee 123,128 .
’ S f typeface, | SRR
Preemptive Task Switching 160 SZ?:ci?l{;xtype ace, use o 1;
preset O POTES Of MEMOry ... 17 Serial /O to PC COM Port............. 115
rérolflevei?;]s ocument . Serial POrtsoccveveveriiecieeieeieeeieenn 106
S e e Serial Window.........cccevevervenieniiennnns 91
gﬁ?;igfﬁﬁi AnCtion. .cceeesvvrv 123, 12; SETUP program........c.cceeeeeevveenneennen. 11
"""""""""""""""""""""""""" SFRS ...oveiieieiiecieeiereeieeie e, 102
Production kit R 3 Sien?ens Easy-Case..........ooovrrrorroooeen 63
Professional Developer’s Kit................ 8 Signal FUNCHONSvrrrveeerrrreeeo 134
Program counter system variable...... 1 (1)1 Simlation of complex Hardware....... 114
PI‘O! ect Commands..........ccoeceevevenennee. 1 g Simulating I/O ports.........cccecveevennen. 105
IIZrOJ.ecE Iq\w/lenu:[..................................... o Simulating serial POrts..................... 106
TOJECT LALGCLS oo SIMUIAtioncoceeveieieieieeieieees 81
Project Windowcccccvevveiveirnnnn. 55 S;EEth:)(;n 81
Protocol D ot 117 IMUIALOT .o
protocol Debug Oupu o Single Step Program............c..oo... 86

Single-board computers.................... 173

Getting Started and Creating Applications

171

SMALL ..ot 25,26
Software development cycle................ 6
Software requirements....................... 11
Software Version Control
SYSIEMSvveeerieeieeeieerveeere e 64
Source BIOWSErccceeeeveeneeneene 58
Source Integrity from MKS............... 64
SourceSafe from Microsoft................ 64
Special function registers................. 102
SRC ..ottt 31
Start PVision2ccceccveeveeecieencveennnenn 48
Start Debugging.........ccceeeveeeiverveenenn. 82
Start External Tools........c.ccccceevereene 71
Startup code......oovveerieeriieeniienieenne 171
STARTUP.AST .o, 50
String constantsccccceeeeveereneennne 100
SVCS Menu....cccooeeneenenieiieicecne 21
SWItCh. ..o 119
Symbol expressions..........ccceevveennne 107
Symbols
108
CPU driver.....ccoocevvveevvenienienenns 102
Fully qualified.........c.ccccerennennee. 108
108,109
Module names.........ccccceveeeeeenene 107
Naming conventions 107
Non-qualified.........cccceerveenneennns 109
Qualified names..........cc....c........ 108
SFRS.c.etiieieiieieeeee e 102
Special function registers........... 102
System variablesc......... 101
VTREGS ..cvooiiiiieieieeeseee 102
Symbols Windowccceecvverveennenn. 93
Syntax errors......cccveevveerveerveenveennnenn 53
System variables..........ccceeeveerenennee. 101
$101

breakcocceeeciiiieeee 101
CYCIES..uiieiiieiieeie e 101
TETACE. c.veeeiie e eree et 102
Program counter................ue...... 101
TAdIX ceoeveeie e 102
T
Target hardwarecccceeveenevenee. 173
Target Tool Settings.......c.cceveerueennenne. 74
Task Information

for RTXS51 e, 166
Task status........ccceeerveercveeniienieenne, 166

of RTX51 functions.................... 166
TaskRunning debug function 130
Technical SUPPOTt.......cceveeeveeriieaieans 5
Test RTX Applications..................... 164
Timer/Counter Clock Inputs 115
Tool Information...........ccceeevverveennen. 79
t0O0] OPLIONS .oovvvveiieeiee e 56
Tools Menu........cceeeevvveennnnn... 20,61,65
Tools Parameters

Key Sequence..........cceeeevveeneennnen. 60
TOPICS cevveeivieeiieecireeeie ettt e eee e 2
Transfer command

library managercccceenen. 184
Translate asm/endasm sections 77
twatch debug function............... 123,128
Type specificationsccceeeeveeneee. 111
Types Of USETS ...ccuveeeeeeiiieeieeeiieeineeae 3
U
UART oot 91
User functionscceeeeveeeeveeenneenns 132
USCTS weveeveeereeireenireenireeieeeeeeeieeeaee e 3

172 Index
Using a Software Version VTREGS.....ccoieoiiieieeieeieeeeee 102
Control System................. 21,55,61,64
Using MONitor........cccccvevvereveneeennnne. 173 W
ULIIEES oo 58
Wait for Signal........ccccceevvervenirenns 160
Vv Wait for Timeout.........cccvevvvererennnne 159
Watch Window.........ccccoevvveiveiennenen. 86
Variable expressions..........ccoeveeeeene. 107 While...ovieiieiiee e 119
Variable valuesccecvevveciierennnnns 86 Window Menu.........cccveveeevennenenennen. 21
Variables, document conventions iv Windows-based tool
Version Control Systems 64 FEQUITCMENLS ... 11
Vertical bar, use of.........ccoocvevvenireens iv Working with a Software Team.......... 64
Vertical ellipses, use ofccccueenenne iv Write Debug Output to file............... 117
View memory contents 87,88 Write Optimum Code..........ccccveneeeen. 67

View Menucccoeeeeveeeeecneeeeeeeeeenee. 18

	Preface
	Document Conventions
	Contents
	Chapter 1. Introduction
	Manual Topics
	Changes to the Documentation
	Evaluation Kits and Production Kits
	Types of Users
	Requesting Assistance
	Software Development Cycle
	Product Overview

	Chapter 2. Installation
	System Requirements
	Installation Details
	Folder Structure

	Chapter 3. Development Tools
	µVision2 Integrated Development Environment
	C51 Optimizing C Cross Compiler
	A51 Macro Assembler
	BL51 Code Banking Linker/Locator
	LIB51 Library Manager
	OC51 Banked Object File Converter
	OH51 Object˚Hex Converter

	Chapter 4. Creating Applications
	Create a Project
	Project Targets and File Groups
	Overview of Configuration Dialogs
	µVision2 Utilities
	Writing Optimum Code
	Tips and Tricks

	Chapter€5. Testing Programs
	µVision2 Debugger
	Debug Commands
	Expressions
	Tips and Tricks

	Chapter 6. µVision2 Debug Functions
	Creating Functions
	Invoking Functions
	Function Classes
	Differences Between Debug Functions and C
	Differences Between µVision2 and dScope

	Chapter 7. Sample Programs
	HELLO: Your First 8051 C Program
	MEASURE: A Remote Measurement System

	Chapter 8. RTX-51 Real-Time Operating System
	Introduction
	RTX51 Technical Data
	Overview of RTX51 Routines
	TRAFFIC: RTX-51 Tiny Example Program
	RTX Kernel Aware Debugging

	Chapter 9. Using on-chip Peripherals
	Chapter 10. CPU and C Startup Code
	Chapter 11. Using Monitor-51
	Chapter 12. Command Reference
	µVision 2 Command Line Invocation
	A51 / A251 Macro Assembler Directives
	C51/C251 Compiler
	LIB51 / L251 Library Manager Commands
	OC51 Banked Object File Converter

	Index

