
8051 Utilities
BL51 Code Banking Linker/Locator

LIB51 Library Manager
OC51 Banked Object File Converter

OH51 Object Hex Converter

User’s Guide 04.95

ii Keil Software

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

© Copyright 1990-1995 Keil Elektronik GmbH., and Keil Software, Inc.
All rights reserved.

Keil C51™ and dScope™ are trademarks of Keil Elektronik GmbH.
Microsoft®, MS–DOS®, and Windows™ are trademarks or registered trademarks
of Microsoft Corporation.
IBM®, PC®, and PS/2® are registered trademarks of International Business
Machines Corporation.
Intel®, MCS® 51, MCS® 251, ASM–51®, and PL/M–51® are registered
trademarks of Intel Corporation.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

A84 D04/27/95

8051 Utilities iii

Preface
This manual describes the Keil Software utilities for the 8051. Included are the
BL51 code banking linker/locator, the LIB51 library manager, the OC51 banked
object file converter, and the OH51 object to hex converter. You use these
utilities to generate executable 8051 programs from modules you create using the
Keil C51 compiler and A51/A251 assembler and the Intel ASM-51 assembler
and PL/M-51 compiler. This user’s guide assumes that you are familiar with the
MS-DOS operating system and how to program the 8051 microprocessor.

This user’s guide is divided into the following five chapters:

“Chapter 1. BL51 Code Banking Linker/Locator,” describes the linker and
explains how to use the command-line directives. This part includes also
reference section of all linker directives, along with examples and descriptions.

“Chapter 2. Application Examples,” contains several program examples which
show the linker and tool invocation.

“Chapter 3. LIB51 Library Manager,” shows you how to use the library manager
to create and maintain a library of object modules.

“Chapter 4. OC51 Banked Object File Converter,” shows you how to convert
banked object files (object files created with the BL51 code banking
linker/locator) into absolute object files.

“Chapter 5. OH51 Object-Hex Converter,” describes the object file converter
program that generates HEX files. This application allows you to create Intel
HEX files from the absolute object modules created by the BL51 code banking
linker/locator and OC51.

iv Preface

Document Conventions
This document uses the following conventions:

Examples Description

README.TXT Bold capital text is used for the names of executable programs, data
files, source files, environment variables, and commands you enter at
the MS-DOS command prompt. This text usually represents commands
that you must type in literally. For example:

CLS DIR BL51.EXE

Note that you are not required to enter these commands using all capital
letters.

Courier Text in this typeface is used to represent information that displays on
screen or prints at the printer.

This typeface is also used within the text when discussing or describing
command line items.

Variables Text in italics represents information that you must provide. For
example, projectfile in a syntax string means that you must supply the
actual project file name.

Occasionally, italics are also used to emphasize words in the text.

Elements that repeat… Ellipses (…) are used in examples to indicate an item that may be
repeated.

Omitted code
.
.
.

Vertical ellipses are used in source code examples to indicate that a
fragment of the program is omitted. For example:

void main (void) {
.
.
.
while (1);

!Optional Items" Optional arguments in command-line and option fields are indicated by
double brackets. For example:

C51 TEST.C PRINT !(filename)"
{ opt1 | opt2 } Text contained within braces, separated by a vertical bar represents a

group of items from which one must be chosen. The braces enclose all
of the choices and the vertical bars separate the choices. One item in
the list must be selected.

Keys Text in this sans serif typeface represents actual keys on the keyboard.
For example, “Press Enter to continue.”

8051 Utilities v

Contents

Chapter 1. BL51 Code Banking Linker/Locator ...1
Introduction to BL51 .. 1
BL51 Overview... 3

Combining Program Modules ... 4
Combining Segments .. 5
Locating Segments .. 6
Overlaying Data Memory.. 8
Resolving External References ... 8
Absolute Address Calculation... 8
Generating an Absolute Object File .. 9
Generating a Listing File... 9
Bank Switching ... 10
Using RTX51 and RTX51 Tiny.. 11

Linking Programs with BL51.. 12
Long Command Lines ... 13
Command Files ... 13
Command-Line Examples ... 13
DOS Errorlevel ... 14
Output File .. 14
Command-Line Directives .. 15

Directive Summary ... 17
Listing File Directives... 17
Output File Directives ... 22
Segment Size and Location Directives.. 25
High-Level Language Directives... 32
Bank Switching Directives.. 43
RTX 51 Full and RTX51 Tiny Directives... 50

Bank Switching Configuration.. 51
L51_BANK.A51 Constants .. 51
Public Symbols in L51_BANK.A51 ... 53
Configuration Examples.. 54

BL51 Directive Reference .. 57
BANKAREA .. 58
BANKx ... 59
BIT.. 60
CODE.. 61
COMMON .. 62
DATA ... 63
IDATA.. 64
IXREF... 65
NAME... 66
NOAMAKE .. 67
NODEBUGLINES.. 68
NODEBUGPUBLICS... 69

vi Contents

NODEBUGSYMBOLS...70
NODEFAULTLIBRARY..71
NOLINES..72
NOMAP ..73
NOPUBLICS...74
NOSYMBOLS ..75
OVERLAY / NOOVERLAY ..76
PAGELENGTH ..78
PAGEWIDTH...79
PDATA ...80
PRECEDE...81
PRINT ...82
RAMSIZE ...83
REGFILE ..84
RTX51...85
RTX51TINY ...86
STACK..87
XDATA...88

BL51 Error Messages..89
Warnings ...89
Non-Fatal Errors..92
Fatal Errors..95
Exceptions ...98

Chapter 2. Application Examples..101
C51 Example...101

CSAMPLE1.C Listing File..102
CSAMPLE2.C Listing File..102
CSAMPLE3.C Listing File..103
CSAMPLE Linker/Locator Listing File ..103

A51 Example...107
ASAMPLE1.A51 Listing File ...108
ASAMPLE2.A51 Listing File ...109
ASAMPLE3.A51 Listing File ...110
ASAMPLE Linker/Locator Listing File ..111

Code Banking Examples ...112
Example 1. Code Banking with C51 ..112
Example 2. Code Banking with Constants ...119
Example 3. Placing Specific Functions in Code Banks124
Example 4. Code Banking with PL/M-51 ..129

Chapter 3. LIB51 Library Manager ...137
Using LIB51..137
Interactive Mode ...137
Command Summary..138
Creating a Library ...139
Adding Object Modules ..140
Removing Object Modules..141

8051 Utilities vii

Listing Library Contents ... 142
Help Information... 143
LIB51 Error Messages.. 144

Fatal Errors ... 144
Errors .. 145

Chapter 4. OC51 Banked Object File Converter..147
Using OC51 .. 147
OC51 Error Messages... 149

Fatal Errors ... 149

Chapter 5. OH51 Object-Hex Converter..151
Using OH51.. 151
OH51 Error Messages... 152
Intel HEX File Format .. 154

Record Format .. 154
Data Records... 155
End-of-File (EOF) Records... 155
Example Intel HEX File.. 156

Glossary...157

Index..163

viii Contents

8051 Utilities 1

1
Chapter 1. BL51 Code Banking
Linker/Locator

Introduction to BL51

The BL51 code banking linker/locator is used to link or join together object
modules that were created using the A51 assembler, the C51 compiler, the
PL/M-51 compiler. Object modules that are created by these translators are
relocatable and cannot be directly executed. They must be converted into
absolute object modules. The BL51 code banking linker/locator does this and
much more.

NOTE
The BL51 code banking linker/locator provides a superset of the functions
performed by the L51 Linker/Locator. BL51 provides support for the following
capabilities, which are not available with L51.

′ Programs that are larger than 64 KBytes

′ Code banking or bank switching

′ RTX51 Tiny Real–Time Multitasking Operating System

′ RTX51 Full Real–Time Multitasking Operating System

Programs you create using the A51 Assembler and the C51 C Compiler must be
linked using the BL51 code banking linker/locator. You cannot execute or
simulate programs that are not linked, even if they consist of only one source
module. If your application will be using multiple code banks or if you your
application will be using either RTX51 or RTX51 Tiny, you must use the BL51
code banking linker/locator to link your program. L51 does not handle the
requirements of bank switching or Real–Time applications.

Programs you create using the A51 assembler and the C51 compiler must be
linked using the L51 linker/locator or the BL51 code banking linker/locator. If
your application will be using multiple code banks, RTX51 Full, or RTX51
Tiny, you must use the BL51 code banking linker/locator to link your program.
The L51 linker/locator does not handle the requirements of bank switching or
real-time applications.

2 Chapter 1. BL51 Code Banking Linker/Locator

1
The BL51 code banking linker/locator will link one or more object modules
together and will resolve references from one to the other. This allows you to
create a large program that is spread over a number of source and object
modules.

The BL51 code banking linker/locator provides the following functions:

′ Combines several program modules into one module, automatically
incorporating modules from the library files

′ Combines relocatable partial segments of the same segment name into a
single segment

′ Allocates and manipulates the necessary memory for the segments with
which all relocatable and absolute segments are processed

′ Analyzes the program structure and manipulates the data memory using
overlay techniques

′ Resolves external and public symbols

′ Defines absolute addresses and computes the addresses of relocatable
segments

′ Produces an absolute object file that contains the entire program

′ Produces a listing file that contains information about the Link/Locate
procedure, the program symbols, and the cross reference of public and
external symbol names

′ Detects errors found in the invocation line or during the Link/Locate run.

In addition to the operations performed by the L51 linker/locator, the BL51 code
banking linker/locator provides support for the following:

′ Programs that are larger than 64 KBytes

′ Code banking or bank switching

′ RTX51 Tiny Real-Time Multitasking Operating System

′ RTX51 Full Real-Time Multitasking Operating System

8051 Utilities 3

1
All of these operations are described in detail in the remaining sections of this
chapter.

“BL51 Overview” on page 3 provides you with a summary of the features and
capabilities of the BL51 code banking linker/locator. This chapter introduces the
concepts of what a linker is and does.

“Linking Programs with BL51” on page 12 describes how to invoke the linker
from the command line. The command-line arguments are discussed, and
examples are provided.

“Directive Summary” on page 17 lists the command-line directives by category
and provides you with descriptions of each, along with command-line examples.

“Bank Switching Configuration” on page 51 describes what bank switching is
and how it is implemented by the BL51 code banking linker/locator. This
chapter also shows how to make applications that are larger than 64 KBytes
work with code banking.

“BL51 Directive Reference” on page 57 provides an alphabetized listing of all of
the directives that you can enter on the command line.

“BL51 Error Messages” on page 89 lists the errors that you may encounter when
you use the BL51 code banking linker/locator.

BL51 Overview

The BL51 code banking linker/locator takes the object files and library files you
specify and generates either an absolute object file or a banked object file. (An
absolute object files is generated for a non-code banking program. A banked
object file is generated for code banking program.) The BL51 code banking
linker/locator also generates a listing or map file.

Absolute object files may be converted into Intel HEX files by the OH51
Object-Hex Converter. Banked object files must be converted by the OC51
Banked Object File Converter into absolute object files (one for each bank)
before they can be converted into Intel HEX files by the OH51 Object-Hex
Converter.

While processing object and library files, the BL51 code banking linker/locator
performs the following operations.

4 Chapter 1. BL51 Code Banking Linker/Locator

1
Combining Program Modules

The object modules that the BL51 code banking linker/locator combines are
processed in the order in which they are specified on the command line. The
BL51 code banking linker/locator processes the contents of object modules
created with the A51 assembler or the C51 compiler. Library files, however,
contain a number of different object modules; and, only the object modules in
the library file that specifically resolve external references are processed by the
BL51 code banking linker/locator.

Segment Naming Conventions

Objects generated by the C51 and PL/M-51 compilers are stored in segments
which are units of code or data memory. A segment may be relocatable or may
be absolute. Each relocatable segment has a type and a name. This section
describes the conventions used for naming these segments.

Segment names include a module_name. The module_name is the name of the
source file in which the object is declared and excludes the drive letter, path
specification, and file extension. In order to accommodate a wide variety of
existing software and hardware tools, all segment names are converted and
stored in uppercase.

Each segment name has a prefix (or in case of PL/M-51 a postfix) that
corresponds to the memory type used for the segment. The prefix is enclosed in
question marks (?). The following is a list of the standard segment name
prefixes.

Segment Prefix Data Type Description

?PR? code Executable program code

?CO? code Constant data in program memory

?XD? xdata External data memory

?DT? data Internal data memory

?ID? idata Indirectly-addressable internal data memory

?BI? bit Bit data in internal data memory

?BA? bdata Bit-addressable data in internal data memory

?PD? pdata Paged data in external data memory

8051 Utilities 5

1
Combining Segments

A segment is a code or data block that is created by the compiler or assembler
from your source code. There are two basic types of segments: absolute and
relocatable. Absolute segments reside in a fixed memory location. They cannot
be moved by the linker. Absolute segments do not have a segment name and will
not be combined with other segments. Relocatable segments have a name and a
type (as well as other attributes shown in the table below). Relocatable segments
with the same name but from different object modules are considered to be parts
of the same segment and are called partial segments. The linker/locator
combines these partial relocatable segments.

Segments have the following attributes.

Attribute Description

Name Each relocatable segment has a name which is used when combining
relocatable segments from different program modules. Absolute
segments do not have names.

Type The type identifies the address space to which the segment belongs.
The type can be CODE, XDATA, DATA, IDATA, or BIT.

Location Method The location method specifies the relocation operations that can be
performed by the linker/locator. Valid location methods are
BITADDRESSABLE, INBLOCK, INPAGE, PAGE, UNIT, and
OVERLAYABLE.

Length The length attribute specifies the length of the segment.

Base Address The base address specifies the first assigned address of the segment.
With absolute segments, the address is assigned by the assembler.
With relocatable segments, the address is assigned by the
linker/locator.

The above attributes are used to determine how to link, combine, and locate code
or data in the segment.

While processing your program modules, the linker/locator produces a table or
map of all segments. The table contains name, type, location method, length,
and base address of each segment. This table aids in combining partial
relocatable segments. All partial segments having the same name are combined
by the linker/locator into one single relocatable segment. The linker/locator uses
the following rules when combining partial segments.

′ All partial segments that share a common name must have the same type
(CODE, DATA, IDATA, XDATA or BIT). An error occurs if the types do
not correspond.

6 Chapter 1. BL51 Code Banking Linker/Locator

1
′ The length of the combined segments must not exceed the length of the

physical memory area.

′ The location method for each of the combined partial segments must
correspond.

Absolute segments are not combined with other absolute segments, they are
copied directly to the output file.

Locating Segments

After the linker/locator combines partial segments it must determine a physical
address for them. The linker/locator processes each physical memory area
(internal data, external data, or code space, …) separately. The different
memory areas are summarized in the following table.

Memory Area Length Address Range Segment Type

Code 64 KBytes 0000h-FFFFh CODE

External data 64 KBytes 0000h-FFFFh XDATA

Internal on-chip data
(direct addressable)

128 Bytes 00h-7Fh DATA

Internal on-chip data
(indirect addressable) †

256 Bytes 00h-FFh IDATA

Bit space in on-chip data † 128 Bits 00-7Fh BIT

† Refer to the following notes for more information about on-chip RAM.

NOTE
The maximum length of the indirectly addressable data area depends on the
8051 derivative that you are using.

The bit area exists in and overlaps the on-chip data RAM in the byte address
range between 20H and 2FH.

The linker/locator places different segments in each of these memory areas. The
following sections describe how the linker/locator locates segments in these
areas and in which order they are evaluated.

Internal Data Space

Segments that are located in the internal data space include BIT, DATA,
IDATA. Memory space for these segments is allocated in the following order:

8051 Utilities 7

1
1. Register Banks

2. Absolute BIT, DATA, and IDATA segments

3. Segments specified with the PRECEDE directive on the command line

4. Segments specified with the BIT directive on the command line

5. DATA segments that are bit addressable

6. Other relocatable BIT segments

7. Segments specified with the DATA directive on the command line

8. Other relocatable DATA segments

9. Segments specified with the IDATA directive on the command line

10. Other relocatable IDATA segments with the exception of segments named
?STACK

11. Segments specified with the STACK directive on the command line

12. Segments with the name ?STACK and the type IDATA if not specified in
any other command line directive

External Data Space

XDATA and PDATA segments are located in the external data space. Memory
space for these segments is allocated in the following order:

1. Absolute external data segments

2. Segments specified with the XDATA directive on the command line

3. Other relocatable external data segments.

Code Space

Only the CODE segment is located in the code space. Memory space is
allocated in the following order:

1. Absolute code segments

2. Segments specified with the CODE directive on the command line

3. Other relocatable code segments.

8 Chapter 1. BL51 Code Banking Linker/Locator

1
Overlaying Data Memory

The 8051 CPU has a very limited amount of available stack space at run-time.
For this reason, local variables and function arguments of C and PL/M-51
routines are stored at fixed memory locations rather than on the stack. By using
techniques to overlay the parameters and local variables of C and PL/M-51
functions, the linker/locator attempts to maximize the amount of available space.

To accomplish overlaying, the linker/locator analyzes all references or calls
between the various functions. Using this information, the linker/locator can
determine precisely which data and bit segments can be overlaid.

You may use the OVERLAY and NOOVERLAY directives to enable or
disable data overlaying. The OVERLAY directive is the default and allows for
very compact data areas. Use the NOOVERLAY directive to disable the
segment overlay function.

Resolving External References

External symbols reference addresses in other modules. A declared external
symbol must be resolved with a public symbol of the same name. Therefore, for
each external symbol, a public symbol must exist in another module.

The linker/locator builds a table of all public and external symbols that it
encounters. External references are resolved with public references as long as
the names match and the symbol types correspond (for example; DATA,
IDATA, XDATA, …).

The linker/locator reports an error if the symbol types of an external and public
symbol do not correspond. The linker/locator also reports an error if no public
symbol is found for an external reference.

The absolute addresses of the public symbols are resolved after the location of
the segments is determined.

Absolute Address Calculation

After the segments are assigned fixed memory locations and external and public
references are processed, the BL51 code banking linker/locator calculates the

8051 Utilities 9

1
absolute addresses of the relocatable addresses and external addresses.
Symbolic debugging information is also updated to reflect the new addresses.

Generating an Absolute Object File

The linker/locator generates the executable target program in Intel OMF-51
absolute object module format. The generated object module may contain
debugging information if the linker/locator is so directed. This information
facilitates symbolic debugging and testing. You may use the
NODEBUGSYMBOLS, NODEBUGPUBLICS, and NODEBUGLINES
directives to suppress debugging information in the object file.

The output file generated by the BL51 code banking linker/locator may be
loaded by DS51 or an in-circuit emulator, or may be translated by the OC51
Banked Object File Converter and/or the OH51 Object-Hex Converter into an
Intel HEX file for use with an EPROM programmer.

Generating a Listing File

The linker/locator generates a listing file that lists information about each step in
the link and locate process. This file also contains information about the
symbols and segments involved in the linkage. In addition, the following
information may be found in the listing file:

′ The filenames and other parameters specified on the command line.

′ Filenames and module names of all processed modules.

′ A memory allocation table which contains the location of the segments, the
segment type, the location method, and the segment name. This table may
be suppressed by specifying the NOMAP directive on the command line.

′ The overlay map which shows the structure of the finished program and lists
position information for the DATA and BIT function segments. The overlay
map also lists all code segments for which OVERLAYABLE BIT and
OVERLAYABLE DATA segments exist. You may suppress the overlay
map by specifying the NOMAP directive on the command line.

′ A list of all errors in segments and symbols. The error causes are listed at
the end of the listing file.

′ A list of all unresolved external symbols. An external symbol is unresolved
if no corresponding public symbol exists in another input file. Each

10 Chapter 1. BL51 Code Banking Linker/Locator

1
reference to an unresolved external symbol is listed in an error message at
the end of the listing file.

′ A symbol table which contains the symbol information from the input files.
This information consists of the names of the MODULES, SYMBOLS,
PUBLICS, and LINES. LINES are the line numbers produced by a high
level language compiler such as the C51 compiler or the PL/M-51 compiler.
You may selectively suppress the symbolic information by specifying the
NOSYMBOLS, NOPUBLICS, and NOLINES directives on the command
line.

′ An alphabetically sorted cross reference report of all PUBLIC and EXTERN
symbols in which the type of the symbol and the names of the modules are
displayed. The first module name is the module in which the PUBLIC
symbol is defined. Further module names show the modules in which the
EXTERN symbol is defined. If no PUBLIC symbol is present, the message
** UNRESOLVED ** is shown. To produce this cross reference report,
specify the IXREF directive on the command line.

Errors detected during the execution of the BL51 code banking linker/locator are
displayed on the screen as well as at the end of the listing file. A summary of the
BL51 code banking linker/locator errors and their causes are described later in
this section.

Bank Switching

The 8051 directly supports a maximum of 64 KBytes of code space. The BL51
code banking linker/locator allows 8051 programs to be created that are larger
than 64 KBytes by using a technique known as code banking or bank switching.
Bank switching involves using extra hardware to select one of a number of code
banks all of which will reside at a common physical address.

For example, your hardware design may include one 32K ROM mapped from
address 0000h to 7FFFh (known as the common area or common ROM) and four
32K ROMs mapped from code address 8000h to 0FFFFh (known as the code
bank ROMs). The code bank ROMs are typically selected using either two port
bits or two bits in a memory mapped address in XDATA. One of the four ROMs
may then be selected by writing the binary values 00b, 01b, 10b, or 11b to these
two bits. The following figure shows the memory structure.

8051 Utilities 11

1
ROM ROM

ROM

ROM ROM

Common
Area

Bank #0 Bank #1 Bank #2 Bank #3

32 KB 32 KB 32 KB

32 KB

32 KB

0000h

7FFFh

FFFFh

8000h

The program code invoked by the BL51 code banking linker/locator to switch or
select a particular bank is found in the file L51_BANK.A51 in the subdirectory
\C51\LIB. You may alter this file to suit the needs of your particular
implementation.

The code banking facility of BL51 is compatible with the C51 compiler and the
PL/M-51 compiler program modules. Modules written using either of these two
languages can be easily used in code banking applications. No modifications to
the original source files are required.

Refer to “Bank Switching Directives” on page 43 for more information on the
BANKx, BANKAREA, and COMMON directives and instructions for building
code banking programs.

Using RTX51 and RTX51 Tiny

Programs you create that utilize the RTX51 and RTX51 Tiny Real-Time
Operating Systems must be linked using the BL51 code banking linker/locator.
The RTX51 and RTX51TINY directives enable link-time options that are
required to generate RTX51 Full and RTX51 Tiny applications.

12 Chapter 1. BL51 Code Banking Linker/Locator

1
Linking Programs with BL51

To invoke the BL51 code banking linker/locator, type BL51 at the DOS prompt
followed by any object modules or directives and press Enter. You may include
object modules and directives on the command line or you may specify a
command response file. Use one of the following command-line formats:

BL51 !inputlist" !TO outputfile" !directives"

or

BL51 @commandfile

where

inputlist is a list of the object files, separated by commas, for the
linker/locator to include in the final absolute object module
or banked object module . The files named in the
inputlist can contain both absolute and relocatable
program modules which are combined to form the final
absolute object module. Additionally, you may force the
inclusion of modules from library files by specifying their
names in parentheses immediately following the library file
name.

outputfile is the name of the absolute object file that the linker/locator
creates. If no outputfile is specified on the command
line, the first filename in the input list is used. The
basename of the outputfile is used as base for the .M51

map file.

directives are commands and parameters that control the operation of
the BL51 code banking linker/locator.

commandfile is the name of a command input file that may contain an
inputlist, outputfile, and directives.

The inputlist uses the following general format:

filename !(modulename !, …")" !, …"

where

filename is the name of an object file created by the C51 compiler or
the A51 assembler or a library file created by the LIB51
library manager. The filename must be specified with its

8051 Utilities 13

1
file extension. Object files use the extension .OBJ. Library
files use the extension .LIB.

modulename is the name of an object module in the library file. The
modulename may only be used after the name of a library
file. The modulenames must be specified in parentheses
after the filename. Multiple modulenames may be
separated by commas.

Long Command Lines

The invocation line for the BL51 code banking linker/locator may be very long
due to the number of specified input files and directives. To enter very long
command lines, type the ampersand character (&) at the end of a line to indicate
that you want to enter more arguments. The BL51 code banking linker/locator
prompts you with a double greater than sign (>>) to indicate that you may enter
more arguments.

Command Files

In addition to using the ampersand character, you may specify all command-line
arguments for the BL51 code banking linker/locator in a command file. This has
the same format as a normal command line and may be produced by a text editor.
The BL51 code banking linker/locator interprets the first filename preceded by
an at sign (@) as a command file.

Command-Line Examples

The following examples are proper command lines for the BL51 code banking
linker/locator.

BL51 C:\MYDIR\PROG.OBJ TO C:\MYDIR\PROG.ABS

In this example, only the input file, C:\MYDIR\PROG.OBJ, is processed and the
absolute object file generated is stored in the output file C:\MYDIR\PROG.ABS.

BL51 SAMPLE1.OBJ, SAMPLE2.OBJ, SAMPLE3.OBJ &
>> TO SAMPLE.ABS

14 Chapter 1. BL51 Code Banking Linker/Locator

1
In this example, the files SAMPLE1.OBJ, SAMPLE2.OBJ, and SAMPLE3.OBJ are
linked and absolute object file that is generated is stored in the file
SAMPLE.ABS.

BL51 PROG1.OBJ, PROG2.OBJ, UTILITY.LIB

In this example, unresolved external symbols are resolved with the public
symbols from the library file UTILITY.LIB. The modules required from the
library are linked automatically. Modules from the library that are not
referenced are not included in the generated absolute object file.

BL51 PROG1.OBJ, PROG2.OBJ, UTILITY.LIB (FPMUL, FPDIV)

In this example, unresolved external symbols are resolved with the public
symbols from the library file UTILITY.LIB. The modules required from the
library are linked automatically. In addition, the FPMUL and FPDIV modules
are included whether or not they are needed. Other modules from the library that
are not referenced are not included in the generated absolute object file.

DOS Errorlevel

After linking, the BL51 code banking linker/locator sets the DOS ERRORLEVEL

to indicate the status of the linking process. Values are listed in the following
table.

ERRORLEVEL Meaning

0 No ERRORS or WARNINGS

1 WARNINGS only

2 ERRORS and possibly also WARNINGS

3 FATAL ERRORS

You can access the ERRORLEVEL variable in DOS batch files. Refer to your
DOS User’s Guide for more information about ERRORLEVEL or batch files.

Output File

The BL51 code banking linker/locator creates an output file using the input
object files that you specify on the command line. The output file is an absolute
object file that may be loaded by DS51 for debugging. In addition, you may use
the OH51 Object-Hex Converter to create an Intel HEX file from the absolute
object file.

8051 Utilities 15

1
Command-Line Directives

Command-line directives may be entered after the output file specification.
Multiple directives must be separated by at least one space character (‘ ‘). Each
directive may be entered only once on the command line. If a directive is
entered twice, the BL51 code banking linker/locator reports an error.

BL51 code banking linker/locator directives fall into one of the following
categories:

′ Listing File Directives

′ Absolute Object File Directives

′ Segment Size and Location Directives

′ High-Level Language Directives

′ Code Banking Directives

The following table lists all BL51 code banking linker/locator directives along
with their abbreviations and brief descriptions.

Directive Abbreviation Description

BANKx Bx Specifies the starting address and/or segments and/or
object modules for code bank x (where x is a code
bank from 0 to 31).

BANKAREA BA Specifies the address range where the code banks are
located.

BIT BI Locates BIT segments.

CODE CO Locates CODE segments.

COMMON CO Specifies the starting address and/or segments and/or
object modules to place in the common bank. This
directive is essentially the same as the CODE
directive.

DATA DA Locates internal DATA segments.

IDATA ID Locates internal IDATA segments.

IXREF IX Directs the BL51 code banking linker/locator to include
a cross reference report in the listing file.

NAME NA Specifies a module name for the absolute object
output file.

NOAMAKE Specifies that AMAKE information is to be excluded
from the generated absolute object module.

NODEBUGLINES NODL Excludes line number information from the absolute
object output file.

NODEBUGPUBLICS NODP Excludes public symbol information from the absolute
object output file.

16 Chapter 1. BL51 Code Banking Linker/Locator

1
Directive Abbreviation Description

NODEBUGSYMBOLS NODS Excludes local symbol information from the absolute
object output file.

NODEFAULTLIBRARY NLIB Prevents the BL51 code banking linker/locator from
including modules from the run-time libraries.

NOLINES NOLI Prevents the BL51 code banking linker/locator from
including line number information in the listing file.

NOMAP NOMA Prevents the BL51 code banking linker/locator from
including a memory map in the listing file.

NOOVERLAY NOOL Prevents the BL51 code banking linker/locator from
overlaying or overlapping local BIT and DATA
segments.

NOPUBLICS NOPU Prevents the BL51 code banking linker/locator from
including a list of the public symbols in the listing file.

NOSYMBOLS NOSY Prevents the BL51 code banking linker/locator from
including a list of the local symbols in the listing file.

OVERLAY OL Directs the BL51 code banking linker/locator to overlay
local BIT and DATA segments. Also allows you to
specify reference modifications between function
segments.

PAGELENGTH PL Specifies the lines to print on a page in the listing file.

PAGEWIDTH PW Specifies the number of characters to print on a line in
the listing file.

PDATA Specifies the starting address for PDATA segments.

PRECEDE PC Locates segments in the register and bit memory
areas.

PRINT PR Specifies the name of the listing file.

RAMSIZE RS Specifies the size of the on-chip data memory.

REGFILE RF Specifies the name of the generated file that will
contain register usage information.

RTX51 Specifies that the BL51 code banking linker/locator
link the application with support for the RTX51
Real-Time Multitasking Operating System.

RTX51TINY Specifies that BL51 code banking linker/locator link
the application with support for the RTX51 Tiny
Real-Time Multitasking Operating System.

STACK ST Locates STACK segments.

XDATA XD Locates XDATA segments.

The command-line directives are summarized in the following chapter. Refer to
“BL51 Directive Reference” on page 57 for an alphabetical listing of the
directives complete with descriptions and examples.

8051 Utilities 17

1
Directive Summary

BL51 code banking linker/locator command-line directives fall into one of the
following categories.

′ Listing File Directives

′ Output File Directives

′ Segment Size and Location Directives

′ High-Level Language Directives

′ Code Bank Switching Directives

′ RTX51 Directives

The following sections describe these categories and the directives they
encompass.

Listing File Directives

The BL51 code banking linker/locator generates a listing file that contains
information about the link/locate process. This file is sometimes referred to as a
map file. The following directives control the filename, format, and information
that is included in the listing file.

IXREF
NOLINES
NOMAP
NOPUBLICS

NOSYMBOLS
PAGELENGTH
PAGEWIDTH
PRINT

PUBLICS
SYMBOLS

Each of these directives is described below.

PRINT

By default, the listing file is given the basename of the output file specified on
the command line along with the extension .M51. However, you may use the
PRINT directive to specify the name of the listing file. For example, the
following command line:

BL51 MYPROG.OBJ TO MYPROG.ABS PRINT(OUTPUT.MAP)

18 Chapter 1. BL51 Code Banking Linker/Locator

1
directs the BL51 code banking linker/locator to write the listing information to
the file OUTPUT.MAP. You may specify PRINT(LPT1:) to direct the BL51
code banking linker/locator to send the list file to the printer.

PAGELENGTH & PAGEWIDTH

Use the PAGELENGTH and PAGEWIDTH directives to control the number
of lines per page and the number of characters per line respectively. You must
specify these numbers in parentheses following the directive. The following
example instructs the BL51 code banking linker/locator to generate the listing
file with 50 lines per page and 100 characters per line.

BL51 PROG.OBJ TO PROG.ABS PAGELENGTH(50) PAGEWIDTH(100)

IXREF

The IXREF directive instructs the BL51 code banking linker/locator to include a
cross reference report in the listing file. A cross reference report lists symbols,
the area of memory in which they are located (for example, CODE, XDATA,
DATA, IDATA, or BIT), and the source modules in which they are accessed.

You may optionally exclude compiler-generated symbols by specifying the
NOGENERATED argument in parentheses immediately following the IXREF
directive. You may use NOGN as an abbreviation for NOGENERATED.

You may optionally exclude symbol contained within libraries by specifying the
NOLIBRARIES argument in parentheses following the IXREF directive. You
may use NOLI as an abbreviation for NOLIBRARIES.

The following examples show you how to use the IXREF directive.

BL51 SAMPLE1.OBJ, SAMPLE2.OBJ, SAMPLE3.OBJ IXREF

BL51 SAMPLE1.OBJ, SAMPLE2.OBJ, SAMPLE3.OBJ IXREF(NOGENERATED)

BL51 SAMPLE1.OBJ, SAMPLE2.OBJ, SAMPLE3.OBJ IXREF(NOLIBRARIES)

NOMAP

The NOMAP directive prevents the BL51 code banking linker/locator from
including the memory map in the listing file.

8051 Utilities 19

1
Example:
BL51 MYPROG.OBJ NOMAP

NOSYMBOLS

The NOSYMBOLS directive prevents the BL51 code banking linker/locator
from including this table in the listing file.

Example:
BL51 MYPROG.OBJ NOSYMBOLS

NOPUBLICS

The NOPUBLICS directives prevents the BL51 code banking linker/locator
from including this table in the listing file.

Example:
BL51 MYPROG.OBJ NOPUBLICS

NOLINES

The NOLINES directives prevents the BL51 code banking linker/locator from
including line number information in the listing file. Line number information is
generated for debugging purposes. The BL51 code banking linker/locator can
generate a table of line numbers and addresses for source modules in your
program.

BL51 MYPROG.OBJ NOLINES

Example Listing File

The following example includes all optional sections of the listing file.

BL51 BANKED LINKER / LOCATER BL51 V3.x DATE 01/19/93 PAGE
1

MS-DOS BL51 LINKER / LOCATER BL51 V3.x, INVOKED BY:
BL51 MEASURE.OBJ, MCOMMAND.OBJ, GETLINE.OBJ XDATA (4000H) IX

MEMORY MODEL: SMALL WITH FLOATING POINT ARITHMETIC The listing file shows the
command line that invoked the
linker.

20 Chapter 1. BL51 Code Banking Linker/Locator

1
INPUT MODULES INCLUDED:
 MEASURE.OBJ (MEASURE)
 MCOMMAND.OBJ (MCOMMAND)
 GETLINE.OBJ (GETLINE) Object modules that were
 C:\C51\LIB\C51FPS.LIB (?C_FPADD) included are listed at the
 C:\C51\LIB\C51FPS.LIB (?C_FPMUL) beginning of the listing.
 C:\C51\LIB\C51FPS.LIB (?C_FPDIV)
 C:\C51\LIB\C51FPS.LIB (?C_FPCMP)
 C:\C51\LIB\C51FPS.LIB (?C_FCAST)
.
.
.
 C:\C51\LIB\C51S.LIB (?C_LSTXDATA)
 C:\C51\LIB\C51S.LIB (?C_LSTPDATA)
 C:\C51\LIB\C51S.LIB (?C_ISTACKD)

LINK MAP OF MODULE: MEASURE (MEASURE)

TYPE BASE LENGTH RELOCATION SEGMENT NAME The memory map is included
--- after the object modules.
 You can disable the memory
* * * * * * D A T A M E M O R Y * * * * * * * map using the NOMAP directive.
REG 0000H 0008H ABSOLUTE "REG BANK 0".
REG 0008H 0008H ABSOLUTE "REG BANK 1"
DATA 0010H 0010H UNIT ?C_LIB_DATA
DATA 0020H 0001H BIT_ADDR ?C_LIB_DBIT
BIT 0021H.0 0000H.3 UNIT ?BI?MEASURE
BIT 0021H.3 0000H.1 UNIT ?BI?GETCHAR

* * * * * * * X D A T A M E M O R Y * * * * * * *
 0000H 4000H *** GAP ***
XDATA 4000H 1FF8H UNIT ?XD?MEASURE

* * * * * * * C O D E M E M O R Y * * * * * * *
CODE 0000H 0003H ABSOLUTE
CODE 0003H 0005H UNIT ?PR?GETCHAR?UNGETCHAR
 0008H 0003H *** GAP ***
CODE 000BH 0003H ABSOLUTE
CODE 000EH 005BH UNIT ?PR?SAVE_CURRENT_MEASUREMENTS?MEASUR
CODE 0069H 00D3H UNIT ?PR?TIMER0?MEASURE
CODE 013CH 008BH UNIT ?PR?_READ_INDEX?MEASURE
CODE 01C7H 0035H UNIT ?PR?CLEAR_RECORDS?MEASURE
CODE 1BD2H 0011H UNIT ?PR?GETCHAR?GETCHAR
CODE 1BE3H 0016H UNIT ?PR?_ISSPACE?ISSPACE
CODE 1BF9H 0018H UNIT ?PR?_TOUPPER?TOUPPER
.
.
.
OVERLAY MAP OF MODULE: MEASURE (MEASURE) An overlay map is listed after the

memory map. The overlay map
shows the call tree of your
 application.

SEGMENT BIT-GROUP DATA-GROUP
 +--> CALLED SEGMENT START LENGTH START LENGTH
--
?PR?TIMER0?MEASURE ----- ----- ----- -----
 +--> ?PR?SAVE_CURRENT_MEASUREMENTS?MEASURE
 +--> ?C_LIB_CODE

?PR?SAVE_CURRENT_MEASUREMENTS?MEASURE ----- ----- ----- -----
 +--> ?C_LIB_CODE

?C_C51STARTUP ----- ----- ----- -----
 +--> ?PR?MAIN?MEASURE
 +--> ?C_INITSEG

?PR?MAIN?MEASURE ----- ----- 003CH 0003H
 +--> ?PR?CLEAR_RECORDS?MEASURE

8051 Utilities 21

1
 +--> ?CO?MEASURE
 +--> ?PR?PRINTF?PRINTF
 +--> ?PR?_GETLINE?GETLINE
 +--> ?PR?_TOUPPER?TOUPPER
 +--> ?PR?_READ_INDEX?MEASURE
 +--> ?PR?_GETKEY?_GETKEY
 +--> ?C_LIB_CODE
 +--> ?PR?MEASURE_DISPLAY?MCOMMAND
 +--> ?PR?_SET_TIME?MCOMMAND
 +--> ?PR?_SET_INTERVAL?MCOMMAND

?PR?CLEAR_RECORDS?MEASURE ----- ----- ----- -----
 +--> ?C_LIB_CODE

?PR?PRINTF?PRINTF 0021H.4 0001H.1 004BH 001CH
 +--> ?C_LIB_CODE
 +--> ?PR?PUTCHAR?PUTCHAR

?PR?_GETLINE?GETLINE ----- ----- 003FH 0004H
 +--> ?PR?_GETKEY?_GETKEY
 +--> ?PR?PUTCHAR?PUTCHAR
.
.
.
SYMBOL TABLE OF MODULE: MEASURE (MEASURE) The symbol table lists public,

local, and line number
VALUE TYPE NAME information.

------- MODULE MEASURE
C:0000H SYMBOL _ICE_DUMMY_

B:00C8H.0 PUBLIC T2I0
B:00C8H.1 PUBLIC T2I1
B:00B0H.4 PUBLIC T0 You can use the NOPUBLICS
B:00D0H.6 PUBLIC AC directiveto exclude public
D:00E8H PUBLIC P4 symbols from the listing.
B:00B0H.5 PUBLIC T1
D:00F8H PUBLIC P5
B:00D8H.7 PUBLIC BD
D:0023H PUBLIC current
.
.
.
D:000FH SYMBOL i You can use the NOSYMBOLS
C:0076H LINE# 104 directive to exclude local
C:0079H LINE# 105 symbols from the listing.
C:007CH LINE# 106
.
.
.
C:00D0H LINE# 125 You can use the NOLINES
C:00D0H LINE# 126 directive to exclude line
C:00D0H LINE# 128 number information from
C:00E5H LINE# 129 the listing.
C:00E9H LINE# 131
C:00F1H LINE# 132
C:00F3H LINE# 134
.
.
.

INTER-MODULE CROSS-REFERENCE LISTING

NAME USAGE MODULE NAMES The IXREF directive instructs
--- L51 toinclude a cross reference

table.
?C_ATOFFIRSTCALL BIT; ?C_ATOF SCANF

22 Chapter 1. BL51 Code Banking Linker/Locator

1
?C_CASTF CODE; ?C_CASTF MCOMMAND
?C_CASTF2. CODE; ?C_CASTF
?C_CCASE CODE; ?C_CCASE PRINTF SCANF
?C_CHARLOADED. BIT; GETCHAR UNGETC
?C_CLDOPTR CODE; ?C_CLDOPTR PRINTF SCANF
?C_CLDPTR. CODE; ?C_CLDPTR PRINTF SCANF
?C_COPY. CODE; ?C_COPY MCOMMAND MEASURE
.
.
.

Output File Directives

The linker/locator generates either absolute object files or banked object files.
Banked object files must be converted, by the OC51 Banked Object File
Converter, into absolute object files (one for each bank).

Absolute object files contain no relocatable or external references and can be
converted by the OH51 Object-Hex Converter into Intel HEX files. Intel HEX
files may be directly loaded into an emulator or EPROM programmer. The
following directives control the module name, as well as debugging and source
module information that may be included in the absolute object file.

NAME
NOAMAKE
NODEBUGLINES

NODEBUGPUBLICS
NODEBUGSYMBOLS

These directives are described in the following sections.

NAME

You can specify a module name for the absolute object module that the
linker/locator generates using the NAME directive. The NAME directive may
be accompanied by the module name (enclosed in parentheses) that you want to
assign it. In the following,

BL51 MYPROG.OBJ TO MYPROG.ABS NAME(BIGPROG)

BIGPROG is the module name stored in the object file. If no module name is
specified with the NAME directive, the name of the first input module is used
for the module name.

NOTE
The module name specified with the NAME directive is not the filename of the

8051 Utilities 23

1
absolute object file. The module name is stored in the object module file and
may be accessed only by a program that reads the contents of that file.

NOAMAKE

By default, the BL51 code banking linker/locator generates object modules that
include source file information records. These records contain time and date
information for the source file and its include files.

Use the NOAMAKE directive to prevent the BL51 code banking linker/locator
from including these record types in the generated object module. This may be
useful if you have conversion programs that cannot recognize these record
formats.

NODEBUGLINES

The BL51 code banking linker/locator includes line number information in the
absolute object file that it generates. Line number information are the line
numbers of your source modules along with the code addresses for each line.
When you debug your program using an in-circuit emulator or a simulator, you
can step through your program line by line. This is often referred to as source
level debugging.

The NODEBUGLINES directive directs the BL51 code banking linker/locator
to exclude line number information from the object file. This directive is used as
follows:

BL51 MYPROG.OBJ NODEBUGLINES

You may wish to exclude line number information when you are creating your
final production object file.

NOTE
In order for the BL51 code banking linker/locator to include debugging
information in the output object file, that information must already be available
in the input object files. Refer to the A51 User’s Guide and C51 User’s Guide
for information on including debugging information in the object files.

24 Chapter 1. BL51 Code Banking Linker/Locator

1
NODEBUGPUBLICS

The BL51 code banking linker/locator can includes public symbols in the
generated absolute object file. The public symbols information can be used by
simulators and in-circuit emulators to display values and address information for
public variables when debugging your program.

The NODEBUGPUBLICS directive directs the BL51 code banking
linker/locator to exclude public symbol information from the object file. This
directive is used as follows:

BL51 MYPROG.OBJ NODEBUGPUBLICS

You may wish to exclude public symbol debugging information when you are
creating your final production object file.

NOTE
In order for the BL51 code banking linker/locator to include debugging
information in the output object file, that information must already be available
in the input object files. Refer to the A251/ A51 User’s Guide and C51 User’s
Guide for information on including debugging information in the object files.

NODEBUGSYMBOLS

The BL51 code banking linker/locator includes local symbol debugging
information in the absolute object file. Typically, you may use this information
with a simulator or in-circuit emulator to display the values of local symbols
used in your program.

The NODEBUGSYMBOLS directive directs the BL51 code banking
linker/locator to exclude local symbol information from the object file. This
directive is used as follows:

BL51 MYPROG.OBJ NODEBUGSYMBOLS

You may wish to exclude local symbol debugging information when you are
creating your final production object file.

NOTE
In order for the BL51 code banking linker/locator to include debugging
information in the output object file, that information must already be available

8051 Utilities 25

1
in the input object files. Refer to the A251 / A51 User’s Guide and C51 User’s
Guide for information on including debugging information in the object files.

Segment Size and Location Directives

The BL51 code banking linker/locator allows you to specify the size of the
different memory areas or segments, the order of the segments within the
different memory areas, and the location or absolute memory address of different
segments. These segment manipulations are performed using the following
directives.

BIT
CODE
DATA

IDATA
PDATA
PRECEDE

RAMSIZE
STACK
XDATA

The BL51 code banking linker/locator locates segments in three memory areas—
Internal Data, External Data, or Code—and follows a predefined order of
precedence. Note that the standard allocation algorithms usually produce the
best workable solution without requiring you to enter any additional information
on the command line. However, the directives described in this chapter allow
you to more closely control the location of segments within the different memory
spaces.

RAMSIZE

The BL51 code banking linker/locator links and locates your program assuming
that there are 128 bytes of internal data memory available in your target
processor. This is true of most of the 8051 derivatives; however, a number of
derivatives have more or less than 128 bytes of memory.

Use the RAMSIZE directive to specify the number of bytes of internal data
memory in your target 8051 derivative. The number of bytes of internal data
memory must be specified enclosed within parentheses. For example:

BL51 MYPROG.OBJ RAMSIZE(256)

This example links MYPROG.OBJ and specifies that there are 256 bytes of
internal memory that may be allocated by the linker.

The size of the internal data memory may be a number between 64 and 256.
Values outside this range generate a linker error.

26 Chapter 1. BL51 Code Banking Linker/Locator

1
BIT

The BIT directive lets you specify:

′ The starting address for segments placed in the bit-addressable internal data
space

′ The order of segments within the bit-addressable internal data space

′ The absolute memory location of segments in the bit-addressable internal
data space.

Addresses that you specify with the BIT directive are bit addresses. They are
not byte addresses. In the 8051, bit addresses 00h through 7Fh reference bits in
internal data memory bytes from byte address 20h to 2Fh (16 bytes of 8 bits
each, 16 × 8 = 128 = 80h). Bit addresses that are evenly divisible by 8 reference
the low-order bit for its corresponding byte and are also considered to be aligned
on a byte border. A DATA segment that is bit-addressable can be located with
the BIT directive; however, the specified bit address must lie on a byte
boundary. The bit address must be evenly divisible by 8.

To specify the starting address for segments stored in bit-addressable internal
data memory, you must include the starting address in parentheses with the BIT
directive on the command line, as shown in the following examples.

BL51 MYPROG.OBJ BIT(48)

or

BL51 MYPROG.OBJ BIT(30h)

The first example specifies that relocatable BIT segments be located at or after
bit address 48 decimal (30 hex) which is equivalent to byte address 26 hex in the
internal data memory. The second example specifies that relocatable BIT
segments be located at or after bit address 30 hex.

To specify the order for segments stored in bit-addressable internal data memory,
you must include the names of the segments, separated by commas, in
parentheses with the BIT directive on the command line, as shown in the
following example.

BL51 MYPROG.OBJ,A.OBJ,B.OBJ,C.OBJ BIT(?DT?A,?DT?B,?DT?C)

This example places the ?DT?A, ?DT?B, and ?DT?C segments at the beginning
of the bit-addressable internal data memory.

8051 Utilities 27

1
You may also specify the bit address for the segments you specify with the BIT
directive, for example:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ BIT(?DT?A(28h),?DT?B(30h))

This example places the ?DT?A and ?DT?B segments at 28h and 30h,
respectively, in the bit-addressable internal data memory.

DATA

The DATA directive allows you to specify the starting address for segments
placed in the directly–addressable internal data space, the order of segments
within the directly–addressable internal data space, and the absolute memory
location of segments in the directly–addressable internal data space.

To specify the starting address for segments stored in directly–addressable
internal data memory, you must include the starting address enclosed within
parenthesis with the DATA directive on the command line. For example:

BL51 MYPROG.OBJ DATA(48)

or

BL51 MYPROG.OBJ DATA(30h)

The first example above specifies that relocatable DATA segments be located at
or after address 48 decimal (30 hex) in the internal data memory. The second
example specifies that relocatable DATA segments be located at or after address
30 hex.

To specify the order for segments stored in directly–addressable internal data
memory, you must include the names of the segments separated by commas and
enclosed within parenthesis with the DATA directive on the command line. For
example:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ,C.OBJ DATA(?DT?A,?DT?B,?DT?C)

This example will place the ?DT?A, ?DT?B, and ?DT?C segments at the
beginning of the directly–addressable internal data memory.

You can also specify the memory location of the segments you specify with the
DATA directive. For example:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ DATA(?DT?A(28h),?DT?B(30h))

28 Chapter 1. BL51 Code Banking Linker/Locator

1
This example will place the ?DT?A and ?DT?B segments at 28h and 30h in
the directly–addressable internal data memory respectively.

IDATA

The IDATA directive lets you specify:

′ The starting address for segments placed in the indirectly-addressable
internal data space

′ The order of segments within the indirectly-addressable internal data space

′ The absolute memory location of segments in the indirectly-addressable
internal data space.

To specify the starting address for segments stored in indirectly-addressable
internal data memory, you must include the starting address in parentheses with
the IDATA directive on the command line, for example:

BL51 MYPROG.OBJ IDATA(64)

or

BL51 MYPROG.OBJ IDATA(40h)

The first example specifies that relocatable IDATA segments be located at or
after address 64 decimal (40 hex) in the internal data memory. The second
example specifies that relocatable IDATA segments be located at or after
address 40 hex.

To specify the order for segments stored in indirectly-addressable internal data
memory, you must include the names of the segments, separated by commas, in
parentheses with the IDATA directive on the command line, for example:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ,C.OBJ IDATA(?ID?A,?ID?B,?ID?C)

This example places the ?ID?A, ?ID?B, and ?ID?C segments at the beginning
of the indirectly-addressable internal data memory.

You may also specify the location of the segments you specify with the IDATA
directive, for example:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ IDATA(?ID?A(30h),?ID?B(40h))

8051 Utilities 29

1
This example places the ?ID?A and ?ID?B segments at 30h and 40h,
respectively, in the indirectly-addressable internal data memory.

PRECEDE

The PRECEDE directive allows you to specify segments that lie in the internal
data memory that should precede all other segments in that memory space.
Segments that you specify with this directive will be located after the BL51 code
banking linker/locator has located register banks and any absolute BIT, DATA,
and IDATA segments that may exist in your program.

You specify segment names with the PRECEDE directive on the command line.
Segment names must be separated by commas and must be enclosed in
parentheses immediately following the PRECEDE directive, for example:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ PRECEDE(?DT?A,?DT?B)

The segments that you specify are located at the lowest available memory
location in the internal data memory in the order that you specify. You may also
specify the memory location of the segments you specify with the PRECEDE
directive, for example:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ PRECEDE(?DT?A(09h),?DT?B(13h))

This example places the ?DT?A and ?DT?B segments at 09h and 13h,
respectively, in the internal data memory if it is possible to do so

STACK

Use the STACK directive to specify which segments are to be located in the
uppermost IDATA memory space in internal data memory. The segments you
specify with this directive will follow all other segments in the internal data
memory space.

You specify segment names with the STACK directive on the command line.
Segment names must be separated by commas and must be enclosed in
parentheses immediately following the STACK directive, for example:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ STACK(?DT?A,?DT?B)

30 Chapter 1. BL51 Code Banking Linker/Locator

1
The segments that you specify are located at the highest available memory
location in the internal data memory in the order that you specify. You can also
specify the memory location of the segments you specify, for example:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ STACK(?DT?A(69h),?DT?B(73h))

This example places the ?DT?A and ?DT?B segments at 69h and 73h,
respectively, in the internal data memory if it is possible to do so

The C51 compiler and the PL/M-51 compiler both generate a stack segment
called ?STACK which is automatically located at the top of the internal data
memory. The 8051 stack pointer is initialized by the startup code to point to this
location. All return addresses and data that are pushed are stored in this memory
area. It is not necessary to specifically locate stack segments if you are using
only C or PL/M-51. The STACK directive is usually used with assembly
programs in which there might be a number of stack segments.

NOTE
You should use extreme caution when relocating the ?STACK segment using the
STACK directive. This operation can easily result in a target program that will
not run and that will corrupt system variables.

CODE

The CODE directive allows you to specify:

′ The starting address for segments placed in the code memory space

′ The order of segments within the code memory space

′ The absolute memory location of segments in the code memory space.

To specify the starting address for segments stored in the code space, you must
include the starting address in parentheses with the CODE directive on the
command line, for example:

BL51 MYPROG.OBJ CODE(200)

or

BL51 MYPROG.OBJ CODE(4000h)

The first example specifies that relocatable segments in code memory be located
at or after address 200 decimal (C8 hex) in the code space. The second example

8051 Utilities 31

1
specifies that relocatable segments in code memory be located at or after address
4000 hex.

To specify the order for segments in the code space, you must include the names
of the segments, separated by commas, in parentheses with the CODE directive
on the command line, for example:

BL51 MYPROG.OBJ CODE(?PR?FUNC1?MYPROG,?PR?FUNC2?MYPROG)

This example places the ?PR?FUNC1?MYPROG and ?PR?FUNC2?MYPROG segments
at the beginning of the code memory. These segments contain the C functions
func1 and func2, respectively.

You may also specify the memory location of the segments you specify with the
CODE directive, for example:

BL51 MYPROG.OBJ &

CODE(?PR?FUNC1?MYPROG(1000h),?PR?FUNC2?MYPROG(2000h))

This example places the ?PR?FUNC1?MYPROG and ?PR?FUNC2?MYPROG segments
at 1000h and 2000h, respectively, in the code space.

XDATA

The XDATA directive allows you to specify:

′ The starting address for segments placed in the external data space

′ The order of segments within the external data space

′ The absolute memory location of segments in the external data space.

To specify the starting address for data stored in the external memory space, you
must include the starting address in parentheses with the XDATA directive on
the command line, for example:

BL51 MYPROG.OBJ XDATA(100)

or

BL51 MYPROG.OBJ XDATA(1000h)

The first example specifies that relocatable segments in the external data
memory be located at or after address 100 decimal (64 hex) in the external data

32 Chapter 1. BL51 Code Banking Linker/Locator

1
memory. The second example specifies that relocatable segments in external
data memory be located at or after address 1000 hex.

To specify the order for segments in the external data memory, you must include
the names of the segments, separated by commas, in parentheses with the
XDATA directive on the command line, for example:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ,C.OBJ XDATA(?XD?A,?XD?B,?XD?C)

This example places the ?XD?A, ?XD?B, and ?XD?C segments at the beginning
of the external data memory.

You may also specify the location of the segments you specify with the XDATA
directive, for example:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ XDATA(?XD?A(100h),?XD?B(200h))

This example places the ?XD?A and ?XD?B segments at 100h and 200h,
respectively, in the external data memory.

PDATA

The PDATA directive allows you to specify the starting address, in external data
memory, for PDATA segments. You must enter the starting address
immediately following the PDATA directive on the command line. The address
must be enclosed in parentheses, for example:

BL51 MYPROG.OBJ PDATA(8000h)

This example specifies that PDATA segments are to be located starting at
address 8000 hex in the external data memory.

In addition to specifying the starting address for PDATA segments on the linker
command line, you must also modify the startup code stored in STARTUP.A51 to
indicate that PDATA segments are located at 8000h. Refer to the C51 User’s
Guide for more information about PDATA and COMPACT model programming.

High-Level Language Directives

The BL51 code banking linker/locator provides control over aspects of the
output file that have to do with high-level languages like C and PL/M-51. You
can control whether or not the BL51 code banking linker/locator includes

8051 Utilities 33

1
modules from the run-time library and whether or not the BL51 code banking
linker/locator overlays the local variable areas of C and PL/M-51 functions. The
directives NODEFAULTLIBRARY, NOOVERLAY, OVERLAY, and
REGFILE are available for these applications.

NODEFAULTLIBRARY

By default, the BL51 code banking linker/locator includes modules from the
run-time libraries that are referenced by your C and PL/M-51 programs.

The run-time libraries may be stored in any subdirectory as long as they are
referenced by the C51LIB DOS environment variable. This variable can be set
by typing the following DOS command at the command prompt:

SET C51LIB=C:\C51\LIB

This command defines the subdirectory in which the library files are located.
This makes it unnecessary for library files to be located in the same subdirectory
as the object files for your program. If the C51LIB environment variable is not
defined, the BL51 code banking linker/locator searches for the library files in the
current directory only.

The library file is chosen based on the memory model and floating-point
requirements of the object files. The following libraries are automatically added
their uses.

Library File Description

C51S.LIB Small model library without floating-point arithmetic

C51FPS.LIB Small model floating-point arithmetic library

C51C.LIB Compact model library without floating-point arithmetic

C51FPC.LIB Compact model floating-point arithmetic library

C51L.LIB Large model library without floating-point arithmetic

C51FPL.LIB Large model floating-point arithmetic library

PLM51.LIB Library for Intel PL/M-51.

You may use the NODEFAULTLIBRARY directive to prevent the BL51 code
banking linker/locator from including modules from these run-time libraries, for
example:

BL51 MYPROG.OBJ NODEFAULTLIBRARY

34 Chapter 1. BL51 Code Banking Linker/Locator

1
NOOVERLAY

Because of the limited amount of stack space available on the 8051, local
variables and function arguments of C and PL/M-51 routines are stored at fixed
memory locations rather than on the stack. Normally, the BL51 code banking
linker/locator attempts to overlay this memory by analyzing your program and
creating a call tree of the routines that it finds.

This technique usually works very well and provides a more efficient use of
memory than a conventional stack frame would. However, in certain situations,
this can be undesirable.

You may use the NOOVERLAY directive to disable overlay analysis and
implementation. When this directive is specified on the command line, the BL51
code banking linker/locator does not overlay variables and function argument
data space. The NOOVERLAY directive is specified as follows:

BL51 MYPROG.OBJ NOOVERLAY

OVERLAY

The 8051 CPU has a very limited amount of available stack space at run-time.
For this reason, local variables and function arguments of C and PL/M-51
routines are stored at fixed memory locations rather than on the stack.

The BL51 code banking linker/locator attempts to overlay this memory by
analyzing your program and creating a call tree of the function references
between the various code segments. The appropriate data and bit segments are
determined by standard segment naming conventions. It is assumed that the
segment names and the implied memory type extensions are the same.
Therefore, segments used in your programs should be constructed according to
the following rules.

Segment Type C51 Segment Name PL/M-51 Segment Name

CODE ?PR?functionname?modulename ?modulename?PR

BIT ?BI?functionname?modulename ?modulename?BI

DATA ?DT?functionname?modulename ?modulename?DT

IDATA ?ID?functionname?modulename —

XDATA ?XD?functionname?modulename —

PDATA ?PD?functionname?modulename —

8051 Utilities 35

1
NOTE
Unless you are writing and interfacing assembly routines to C or to PL/M-51,
you do not need to be concerned with these segment naming conventions.

The memory type of the segment names is determined by the prefixes and
extensions ?PR, ?BI, ?DT, ?XD, ?ID, and ?PD. Each BIT and DATA segment
should contain the OVERLAYABLE attribute.

The C51 and PL/M-51 compilers automatically define BIT and DATA segments
according to these rules. However, if you use overlayable segments in your
assembly modules, you must follow these naming conventions. Refer to the
A251 / A51 User’s Guide for information on how to declare segments.

Data and bit segments are overlaid under the following conditions:

′ No references or calls may exist between the related code segments. During
the analysis procedure of the BL51 code banking linker/locator, the direct
level, as well as references through other code segments, are considered.

′ The code segments may be invoked by only one of the following program
types: main or interrupt.

′ The segment definitions must have been specified according to the previous
rules.

Typically, the BL51 code banking linker/locator analyzes your programs and
generates overlay information that is accurate. However, in some instances the
analysis performed by the BL51 code banking linker/locator is ineffective. This
occurs with indirectly called functions through function pointers and functions
that are called by both the main program and an interrupt function.

In these cases, you may use the OVERLAY directive to control the references
that the BL51 code banking linker/locator uses in its overlay analysis. The
OVERLAY directive may be specified a number of times in the command for
each reference.

36 Chapter 1. BL51 Code Banking Linker/Locator

1
The general format of the overlay parameter is as follows:

OVERLAY (sfname {! | ~} sfname !, …")

or

OVERLAY (sfname {! | ~} (sfname, sfname !, …") !, …")

or

OVERLAY (sfname ! *)

or

OVERLAY (* ! sfname)

where

sfname is a segment name or function name of a C function.

! adds an additional call in the reference listing.

~ deletes a call from the reference listing.

* is used to add roots or disable segment overlaying.

Each of the forms of the OVERLAY directive are described below.

OVERLAY

The OVERLAY directive, when specified without any arguments, instructs the
BL51 code banking linker/locator to automatically determine code references
between modules. This requires that no indirect calls are present in the program
modules. The external and public information stored in each input file is used to
generate this information.

′ OVERLAY (* ! sfname)

The OVERLAY directive can be used to specify a new root for a segment or
function name. BL51 handles these functions including their call trees as
independent programs. Adding roots to an application is useful when real-time
operating systems are used. For example:

BL51 SAMPLE.OBJ OVERLAY (* ! TASK0, TASK1)

8051 Utilities 37

1
In this example the functions TASK0 and TASK1 are handled as independent
program roots.

′ OVERLAY (sfname ! *)

The OVERLAY directive may be specified with a segment or function name
that is to be excluded from the overlay analysis and processed in a normal
fashion. This has no influence on the overlay evaluation of other segments, for
example:

BL51 SAMPLE.OBJ OVERLAY (FUNC1 ! *)

In this example, FUNC1 is excluded from local segment overlaying.

′ OVERLAY (sfname ! sfname1)
OVERLAY (sfname ! (sfname1, sfname2))

The OVERLAY directive may be used to add references to the specified
segments or functions. The first segment name specified is added to subsequent
segments, for example:

BL51 CMODUL1.OBJ OVERLAY (FUNC1 ! (FUNC2, FUNC3))

In this example, references to the function FUNC1 are added to FUNC2 and
FUNC3 for the overlay analysis procedure.

′ OVERLAY (sfname ~ sfname1)
OVERLAY (sfname ~ (sfname1, sfname2))

The OVERLAY directive may be used to delete or remove references between
segments or functions. References to subsequent segments specified in the
command line are removed from the first segment name specified, for example:

BL51 MAINMOD.OBJ, TEXTOUT.OBJ &
 OVERLAY (FUNC1 ~ ?CO?MAINMOD, FUNC2 ~ ?CO?MAINMOD)

In this example, references to the ?CO?MAINMOD segment are deleted from
FUNC1 and FUNC2.

OVERLAY Examples

In most cases, the overlay algorithm works correctly without any adjustments.
However, in some instances when the overlay algorithm cannot determine the
structure of your program, you must adjust function references with the

38 Chapter 1. BL51 Code Banking Linker/Locator

1
OVERLAY directive. This is the case when you use function pointers in your
program.

Using the OVERLAY directive is easy when you know the structure of your
program. The program structure is reflected in the segments listed in the overlay
map of the listing file. If you are in doubt about whether certain segments
should be overlaid or not, you may disable overlaying of those segments.
Segment overlaying can be disabled with the following C51 compiler and BL51
code banking linker/locator options:

′ You can invoke the C51 compiler with the OPTIMIZE (1) option to disable
data overlaying for a whole module.

′ You can invoke the BL51 code banking linker/locator with the
OVERLAY (sfname ! *) option to disable data overlaying for funcname
function.

′ You can invoke the BL51 code banking linker/locator with the
NOOVERLAY option to disable data overlaying for the entire application.

The following application examples show situations where the OVERLAY
directive is required to correct the program structure. In general, a modification
of the references (calls) is required in the following cases:

′ When a pointer to a function is passed or returned as function argument.

′ When a pointer to a function is contained in initialized variables.

Example 1: Using a Pointer to a Function as Function Argument

In the following example indirectfunc1 and indirectfunc2 are indirectly
called through a function pointer in execute. The value of the function pointer
is passed in main. Thus the linker/locator detects that main calls indirectfunc1
and indirectfunc2, though the actual function call is executed by execute.

Following is a program listing for this example.

.

.

.
bit indirectfunc1 (void) { /* indirect function 1 */
 unsigned char n1, n2;
 return (n1 < n2);
}

bit indirectfunc2 (void) { /* indirect function 2 */
 unsigned char a1, a2;

8051 Utilities 39

1
 return ((a1 - 0x41) < (a2 - 0x41));
}

void execute (bit (*fct) ()) { /* sort routine */
 unsigned char i;
 for (i = 0; i < 10; i++) {
 if (fct ()) i = 10;
 }
}

void main (void) {

 if (SWITCH) /* switch: defines function */
 execute (indirectfunc1);
 else
 execute (indirectfunc2);
}
.
.
.

The following listing file shows the overlay map for the program before making
adjustments with the OVERLAY directive.

OVERLAY MAP OF MODULE: OVL1 (OVL1)

SEGMENT BIT-GROUP DATA-GROUP
 +--> CALLING SEGMENT START LENGTH START LENGTH
--
?C_C51STARTUP ----- ----- ----- -----
 +--> ?PR?MAIN?OVL1

?PR?MAIN?OVL1 ----- ----- ----- -----
 +--> ?PR?INDIRECTFUNC1?OVL1
 +--> ?PR?EXECUTE?OVL1
 +--> ?PR?INDIRECTFUNC2?OVL1

?PR?INDIRECTFUNC1?OVL1 ----- ----- 0008H 0002H

?PR?EXECUTE?OVL1 ----- ----- 0008H 0004H

?PR?INDIRECTFUNC2?OVL1 ----- ----- 0008H 0002H

The entry for ?PR?MAIN?OVL1 references ?PR?INDIRECTFUNC1?OVL1,
?PR?EXECUTE?OVL1, and ?PR?INDIRECTFUNC2?OVL1. However, only the
function execute is called from main. The other references are results from
using the function pointer fct, which is passed to execute. The function call to
indirectfunc1 and indirectfunc2 takes place in execute, not in main where
the function is referenced.

In this situation, the linker/locator cannot locate the actual function calls.
Therefore, the BL51 code banking linker/locator incorrectly overlays the local
segments of the functions execute, indirectfunc1, and indirectfunc2. This,
in turn, overwrites the variable values i and fct.

40 Chapter 1. BL51 Code Banking Linker/Locator

1
You can use OVERLAY directive to provide the actual function calls to the
linker. For this example, you must remove the references from main to
indirectfunc1 and indirectfunc2. Do this with main ~ (indirectfunc1,
indirectfunc2). Then, add the actual function call from execute to
indirectfunc1 and indirectfunc2 with executed ! (indirectfunc1,
indirectfunc2). The following shows the complete linker invocation line for
this example.

BL51 OVL1.OBJ OVERLAY (main ~ (indirectfunc1, indirectfunc2), &
 execute ! (indirectfunc1, indirectfunc2))

8051 Utilities 41

1
The following overlay map shows the corrected references.

OVERLAY MAP OF MODULE: OVL1 (OVL1)

SEGMENT BIT-GROUP DATA-GROUP
 +--> CALLING SEGMENT START LENGTH START LENGTH
--
?C_C51STARTUP ----- ----- ----- -----
 +--> ?PR?MAIN?OVL1

?PR?MAIN?OVL1 ----- ----- ----- -----
 +--> ?PR?EXECUTE?OVL1

?PR?EXECUTE?OVL1 ----- ----- 0008H 0004H
 +--> ?PR?INDIRECTFUNC1?OVL1
 +--> ?PR?INDIRECTFUNC2?OVL1

?PR?INDIRECTFUNC1?OVL1 ----- ----- 000CH 0002H

?PR?INDIRECTFUNC2?OVL1 ----- ----- 000CH 0002H

Example 2: Using an Array with Pointer to Functions

In the following application example, func1 and func2 are called indirectly by
main. The entry points are stored as constant values in the table functab and are
located in the segment ?CO?modulname. Therefore, the ?CO?OVL2 segment
contains references to func1 and func2.

In reality, however, the calls are executed from the main function. But, the BL51
code banking linker/locator assumes that func1 and func2 are recursive called,
because in func1 and func2 constant strings are used. These contants strings are
also stored in the segment ?CO?OVL2. The result is that the BL51 code banking
linker/locator reports warnings which indicate recursive calls from the segment
?CO?OVL2 to func1 and func2.

The following listing shows part of the OVL2 program.

.

.

.
void func1 (void) {
 unsigned char i; /* function 1 */

 for (i = 0; i < 10; i++) printf ("THIS IS FUNCTION1\n");
}

void func2 (void) { /* function 2 */
 unsigned char i;

 for (i = 0; i < 10; i++) printf ("THIS IS FUNCTION2\n");
}

42 Chapter 1. BL51 Code Banking Linker/Locator

1
code void (*functab []) () = {func1, func2}; /* function table */

void main (void) {
 (*functab [P1 & 0x01]) ();
}
.
.
.

Although the BL51 code banking linker/locator does not produce erroneous
program code in this example, the references should be adjusted to the real calls.
The fact is that the functions func1 and func2 are called by the main function.

The references of the ?CO?OVL2 segment to the functions func1 and func2
should be deleted with ?CO?OVL2 ~ (func1, func2). Since main calls func1
and func2 these calls can be defined with main ! (func1, func2). The following
shows the complete linker invocation line for the above example.

BL51 OVL2.OBJ OVERLAY (?CO?OVL2~(func1, func2), main!(func1, func2))

Now, the overlay map shows the corrected references and no warning messages
are generated.

OVERLAY MAP OF MODULE: OVL2 (OVL2)

SEGMENT BIT-GROUP DATA-GROUP
 +--> CALLING SEGMENT START LENGTH START LENGTH

?C_C51STARTUP ----- ----- ----- -----
 +--> ?PR?MAIN?OVL2

?PR?MAIN?OVL2 ----- ----- ----- -----
 +--> ?C_LIB_CODE
 +--> ?CO?OVL2
 +--> ?PR?FUNC1?OVL2
 +--> ?PR?FUNC2?OVL2

?PR?FUNC1?OVL2 ----- ----- 0008H 0001H
 +--> ?CO?OVL2
 +--> ?PR?PRINTF?PRINTF

?PR?PRINTF?PRINTF ----- ----- 0009H 0014H
 +--> ?C_LIB_CODE
 +--> ?PR?PUTCHAR?PUTCHAR

?PR?PUTCHAR?PUTCHAR ----- ---- 001DH 0001H

?PR?FUNC2?OVL2 ----- ----- 0008H 0001H
 +--> ?CO?OVL2
 +--> ?PR?PRINTF?PRINTF

8051 Utilities 43

1
REGFILE

The REGFILE directive allows you to specify the name of the file generated by
the BL51 code banking linker/locator that contains register usage flags for each
C function in your program.

The information in this file is used by the C51 compiler when generating code
for each function invocation. The C51 compiler can use the register usage
information generated by the linker to optimize the use of registers when passing
values to and returning values from external functions. This directive facilitates
global register optimization.

REGFILE must be specified on the command line with a valid file name, for
example:

BL51 MYPROG.OBJ REGFILE(MYPROG.REG)

In this instance, the BL51 code banking linker/locator generates the file
MYPROG.REG which contains register usage information.

Bank Switching Directives

The BL51 code banking linker/locator manages and allows you to locate
program code in up to 32 code banks and one common code area. The common
code area is always available to all code banks. These area as well as other
aspects of code banking are described below.

Common Code Area

The common code area can be accessed by all banks. This area usually includes
routines and constant data that must always be accessible; for example, interrupt
and reset vectors, interrupt routines, string constants, bank switching routines,
etc. The following code sections must always be located in the common area:

Reset Vectors Reset and interrupt jump entries must remain in the
common area

Interrupt Vectors in each case, since the code bank selected by the 8051
program is not known at the time of the CPU reset or
interrupt. The BL51 code banking linker/locator,
therefore, locates absolute code segments in the
common area in each case.

44 Chapter 1. BL51 Code Banking Linker/Locator

1
Code Constants Constant values (strings, tables, etc.) which are defined

in the code area must be stored in the common area
unless you guarantee that the code bank containing the
constant data is selected at the time they are accessed by
program code. You can relocate these segments in code
banks by means of control statements.

Interrupt Functions Interrupt functions generated using the C51 compiler
must always be located in the common area. Interrupt
functions can call functions in other code banks. The
BL51 code banking linker/locator produces a warning
when an attempt is made to locate a C51 interrupt
function in a code bank.

Bank Switch Code The code required for switching the code banks as well
as the associated jump table are located in the common
area since these program sections are required by all
banks. As a standard procedure, the BL51 code banking
linker/locator automatically locates these segments in
the common area. You should not attempt to locate
these program sections in other bank areas.

Library Functions Run-time library functions that are invoked by the C51
compiler or the PL/M-51 compiler must be located in
the common area. It is possible that the bank switch
code may use registers that are used to transfer values to
the library functions. Therefore, the BL51 code banking
linker/locator always locates program sections of the
runtime library in the common area. You should not
locate these program sections in other bank areas.

It is difficult to provide a general rule concerning the size of the common area.
The size will always depend on the particular software application and hardware
constraints.

Typically, a separate ROM will be used for the common code area. If this ROM
is not large enough to contain the entire common code, the BL51 code banking
linker/locator will duplicate the remainder of the common code area in the
beginning of each code bank. You may also specify that the BL51 code banking
linker/locator include the entire common area in each code bank and avoid using
a separate common area ROM.

8051 Utilities 45

1
Code Bank Areas

The 8051 only provides 16 address lines for accessing code memory. With 16
address lines, only 64 KBytes of code space can be accessed. Code banks are
addressed using up to five additional address lines that must originate from 8051
I/O ports or from external hardware devices (latches or PIOs) that are mapped
into the XDATA or port memory space. A particular code bank is selected by
controlling the state of the additional address lines. Up to 32 banks can be used.

Code banking applications must include the assembly file L51_BANK.A51 which
is located in the LIB subdirectory. This source module contains the code that is
invoked to switch code banks. You must modify this source file to properly
manipulate the bank switching techniques used by your target hardware. Refer
to “Bank Switching Configuration” on page 51 for a description of this source
file.

Optimum Program Structure with Bank Switching

The BL51 code banking linker/locator automatically generates a jump table for
all functions which are stored in the bank area and are called from the common
area or from other banks. The BL51 code banking linker/locator only uses bank
switching when the program section called actually lies in another memory bank
or when it can be called from the common area. This improves performance and
prevents bank switching from significantly impacting the performance of your
application program. Additionally, the memory and stack requirements for this
bank switching technique are considerably smaller than other alternative
solutions.

Each bank switch takes approximately 50 processor cycles and requires two
additional bytes in the stack area. Bank switches are relatively fast, however,
programs should be structured so that bank switches are seldom required to
achieve maximum performance. This means that functions that are frequently
invoked and functions that are called from multiple code banks should be located
in the common code area.

Specifying Code Banks and Common Code Areas

The BL51 code banking linker/locator provides the BANKAREA, BANKx, and
COMMON directives to specify the location and size of the bank switching
area, the segments to locate in particular code banks, and the segments to locate
in the common area.

46 Chapter 1. BL51 Code Banking Linker/Locator

1
BANKAREA

The BANKAREA directive allows you to specify the starting and ending
address of the area where the code banks will be located. These addresses
should reflect the actual address where the code bank ROMs are physically
mapped. All segments that are assigned to a bank will be located within this
address range unless they are defined differently using the BANKx directive.

The BANKAREA directive must be specified according to the following format,

BANKAREA (start, end)

where

start is the starting address.

end is the ending address of the code banking area.

Example:
BL51 … BANKAREA(8000h, 0FFFFh)

This example specifies that the code bank area is 32 KBytes long and is located
from 8000h to 0FFFFh.

BANKx

When you invoke the BL51 code banking linker/locator for the purpose of
generating a code banking application program, you must specify which program
code you want located in each code bank. This is accomplished using the
BANKx directive. Program code that is not explicitly located in a code bank
will be located in the common area.

The x in the BANKx directive should be replaced by the actual bank number
which may be a number from 0 to 31. For example, BANK0 for code bank
number 0, BANK1 for code bank number 1, and so on.

The BANKx directive allows you to specify:

′ Object and library files to include in the code bank

′ Additional segments to include in the code bank.

8051 Utilities 47

1
The BANKx directive has two distinct forms as shown below.

BANKx { filename !(sfname)" !, filename …"}

or

BANKx (!saddr !,"" !sfname !(addr)" !, sfname …"")

where

x is the bank number to use and can be a number from 0 to 15.

{ and } are used to enclose object files or library files.

(and) are used to enclose the names of segments.

filename is the name of an object file or library file.

sfname is the name of a segment or C function.

saddr is the starting address to use for the specified segments.

addr is the starting address for a particular segment.

The first form of the BANKx directive uses curly braces to enclose the filenames
of object and library files. This form of the BANKx directive may only be
specified in the inputlist portion of the BL51 code banking linker/locator
command line.

The second form of the BANKx directive uses parentheses to enclose the names
of program segments. This form of the BANKx directive may only be specified
in the directives portion of the BL51 code banking linker/locator command
line.

Refer to the following section for more information about the BANKx directive.

COMMON

The COMMON directive is identical to the CODE directive and performs the
same operations. When specifying code banking programs, this directive
operates identically to the BANKx directive and allows you to specify:

′ Object and library files to include in the common area

′ Additional segments to include in the common area.

48 Chapter 1. BL51 Code Banking Linker/Locator

1
The COMMON directive has two distinct forms as shown below.

COMMON {filename !(sfname)"!, filename …"}

or

COMMON (!saddr!,"" !sfname !(addr)"!, sfname …"")

where

{ and } are used to enclose object files or library files.

(and) are used to enclose the starting address for the bank and
segment names and their starting addresses.

filename is the name of an object file or library file.

sfname is the name of a segment or C function.

saddr is the starting address to use for the specified segments.

addr is the starting address for a segment.

The first form of the COMMON directive uses curly braces to enclose the
filenames of object and library files. This form of the COMMON directive may
only be specified in the inputlist portion of the BL51 code banking
linker/locator command line.

The second form of the COMMON directive uses parentheses to enclose the
names of program segments. This form of the COMMON directive may only be
specified in the directives portion of the BL51 code banking linker/locator
command line.

Ordering Segments in a Bank

The BL51 code banking linker/locator orders segments within a code bank
according to established guidelines.

Segments from object modules and libraries (specified using curly braces) are
located starting at the address specified with the BANKAREA directive.

Segments (specified using parentheses) are located starting at saddr or address
0000h if saddr is not specified. Segments may be located at an explicitly
specified address.

8051 Utilities 49

1
Segments are located in a code bank in the following order:

1. Segments specified with explicit addresses.

2. Segments specified without explicit addresses.

3. Segments from object and library files.

Example

A typical BL51 code banking linker/locator command line appears as follows:

BL51 COMMON{C_ROOT.OBJ}, &
>> BANK0{C_BANK0.OBJ}, &
>> BANK1{C_BANK1.OBJ}, &
>> BANK2{C_BANK2.OBJ} &
>> TO MYPROG.ABS &
>> BANKAREA(8000H,0FFFFH)

This example shows how to specify the code bank to use for object modules
included in the program linkage.

You may also specify the code bank to use for individual code segments. For
example:

BL51 COMMON{C_ROOT.OBJ}, &
>> BANK0{C_BANK0.OBJ}, &
>> BANK1{C_BANK1.OBJ} &
>> TO MYPROG2.ABS &
>> BANKAREA(8000H,0FFFFH) &
>> BANK2(8000h, ?PR?FUNC2?C_BANK2)

The BANK2(8000h, ?PR?FUNC2?C_BANK2) directive specifies that the C
function func2 is to be located in bank 2 starting at address 8000h.

You can explicitly specify the starting address for a particular code segment.
For example:

BL51 COMMON{C_ROOT.OBJ}, &
>> BANK0{C_BANK0.OBJ}, &
>> TO MYPROG3.ABS &
>> BANKAREA(8000H,0FFFFH) &
>> BANK1(8000h, ?PR?FUNC1?C_BANK1, ?PR?FUNC2?C_BANK2(8200h))

In this example, the segment ?PR?FUNC1?C_BANK1 is located starting at 8000H in
bank 1. The segment ?PR?FUNC2?C_BANK2 is located at 8200H in bank 1.

50 Chapter 1. BL51 Code Banking Linker/Locator

1
Automatic Bank Selection

The BL51 code banking linker/locator will automatically assign bank numbers in
sequence to object files and library files that are specified on the command line
enclosed in curly braces. For example:

BL51 {C_BANK0.OBJ}, {C_BANK1.OBJ}, {C_BANK2.OBJ}, &
>> C_ROOT.OBJ TO MYPROG4.ABS BANKAREA(8000H,0FFFFH)

This example locates code segments from C_BANK0.OBJ in bank 0,
C_BANK1.OBJ in bank 1, and C_BANK2.OBJ in bank 2. All other program
segments from C_ROOT.OBJ are located in the common code area.

This is equivalent to the following command line.

BL51 COMMON{C_ROOT.OBJ}, &
>> BANK0{C_BANK0.OBJ}, &
>> BANK1{C_BANK1.OBJ}, &
>> BANK2{C_BANK2.OBJ} &
>> TO MYPROG4.ABS &
>> BANKAREA(8000H,0FFFFH)

RTX 51 Full and RTX51 Tiny Directives

You must use the BL51 code banking linker/locator when you link programs
with the RTX51 and RTX51 Tiny Real-Time Multitasking Operating Systems.
The RTX51 Full and RTX51TINY directives instruct the BL51 code banking
linker/locator to resolve references to the RTX51 and RTX51 Tiny libraries
respectively.

RTX51

The RTX51 directive specifies to the BL51 code banking linker/locator that the
application should be linked for use with the RTX51 Real-Time Multitasking
Operating System. This involves resolving references within your program to
RTX51 functions found in the RTX51 library. This directive is specified on the
command line as shown in the following example:

BL51 RTX_EX1.OBJ RTX51

8051 Utilities 51

1
RTX51TINY

The RTX51TINY directive specifies to the BL51 code banking linker/locator
that the application should be linked for use with the RTX51 Tiny Real-Time
Multitasking Operating System. This involves resolving references within your
program to RTX51 Tiny functions found in the RTX51 Tiny library. This
directive is specified on the command line as shown in the following example:

BL51 RTX_EX1.OBJ RTX51TINY

Bank Switching Configuration

When you create a code banking application, you must specify the number of
code banks your hardware provides as well as how the code banks are switched.
This is done by changing constants that are defined in the assembly module
L51_BANK.A51 found in the \C51\LIB\ subdirectory.

L51_BANK.A51 Constants

The banking method as well as the number of banks and thus the number of
address lines used are configured using this source file. L51_BANK.A51 contains
EQU statements at the beginning which are used for the configuration.
Following is a listing of these as well as a description of each.

;************************ Configuration Section ************************
?B_NBANKS EQU 32 ; Define max. Number of Banks *
; *
?B_MODE EQU 0 ; 0 for Bank-Switching via 8051 Port *
; ; 1 for Bank-Switching via XDATA Port *
; *
IF ?B_MODE = 0; *
;------------------------------------*
; if ?BANK?MODE is 0 define the following values *
; For Bank-Switching via 8051 Port define Port Address / Bits *
?B_PORT EQU P1 ; default is P1 *
?B_FIRSTBIT EQU 3 ; default is Bit 3 *
;------------------------------------*
ENDIF; *
; *
IF ?B_MODE = 1; *
;------------------------------------*
; if ?BANK?MODE is 1 define the following values *
; For Bank-Switching via XDATA Port define XDATA Port Address / Bits *
?B_XDATAPORT EQU 0FFFFH ; default is XDATA Port Address 0FFFFH*
?B_FIRSTBIT EQU 0 ; default is Bit 0 *
;------------------------------------*
ENDIF; *
; *
;***

52 Chapter 1. BL51 Code Banking Linker/Locator

1
?B_NBANKS indicates the number of banks to be supported. The number

must be between 2 and 32. Only one 8051 address line (port
terminal) is used for two banks. Three or four banks require
two address lines. Five to eight banks require three address
lines. Nine to sixteen banks require four address lines.
Seventeen to thirty-two banks require five address lines.

?B_MODE indicates if the bank switching code should use an 8051 port
or an XDATA port for the address extension. A value of 0
defines an arbitrary 8051 port for the address extension. A
value of 1 determines a XDATA port which is addressed in
the external address space of the 8051.

?B_PORT specifies the port address used to select the bank address. If
the value 0 is used for ?B_MODE, ?B_PORT can be used to
specify the address of the internal data port. In this case, the
SFR address of an internal data port must be specified. P1 is
defined as the default value for port 1.

?B_XDATAPORT specifies the XDATA memory address used to select the
bank address. If the value 1 is used for ?B_MODE,
?B_XDATAPORT defines the address of an external data port.
In this case, an arbitrary XDATA address can be specified
(address range 0H to 0FFFFH) under which a port can be
addressed in the XDATA area. 0FFFFH is defined as the
default value. If either Intel PL/M-51 or the A51 Assembler
is used, the memory locations ?B_CURRENTBANK and
?B_XDATAPORT must be initialized with the value 0 at the
start of the program.

?B_FIRSTBIT indicates which bit of the defined port is to be assigned first.
The value ?B_FIRSTBIT EQU 3 (defined as the default when
?B_MODE is 0) indicates that P1.3 is to be used as the first
port terminal for the address extension. If, for example, two
port terminals are used for the extension, P1.3 and P1.4 are
used in this case. The remaining lines of the 8051 port can
be used for other purposes. If the value 1 is selected for
?B_MODE, the remaining bits of the XDATA port cannot be
used for other purposes.

The A51 assembler is required to assemble L51_BANK.A51. The object file
L51_BANK.OBJ is automatically linked to the application if the standard default
setting (DEFAULTLIBRARY) is used by the BL51 code banking

8051 Utilities 53

1
linker/locator, and when a high-level language library was added. Otherwise,
L51_BANK.OBJ must be specified as a file in the input list for the BL51 code
banking linker/locator.

Public Symbols in L51_BANK.A51

Additional PUBLIC Symbols are provided in L51_BANK.A51 for your
convenience. They are described below.

?B_CURRENTBANK is a memory location in the DATA or SFR memory which
contains the currently selected memory bank. This memory
location can be read for debugging. A modification of the
memory location, however, does not cause a bank switching
in most cases. Note that the bits are only valid which are
required in this memory location based on setting
?B_NBANKS and ?B_FIRSTBIT. For this reason, the bits
which are not required must be masked out by means of a
corresponding mask.

_SWITCHBANK is a C51 compatible function which allows the bank address
to be selected by the user program. This function can be
used for bank switching if the constant memory is too small.
This C function can be accessed as follows:

extern void switchbank (
 unsigned char bank_number);
.
.
.
switchbank (0);

NOTE
The function switchbank may only be invoked from the common area.

54 Chapter 1. BL51 Code Banking Linker/Locator

1 Configuration Examples

The following examples demonstrate how to configure L51_BANK.A51 for
several different hardware scenarios.

Banking With Four 64 KByte Banks

This example demonstrates the configuration required to bank switch using two
1 Mbit EPROMs. The following figure illustrates the hardware schematic.

LATCH

LATCH

EPROM EPROM

8051

PORT 1
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

EN

EN

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7

CE/ CE/

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7AD7

AD6
AD5
AD4
AD3
AD2
AD1
AD0

PSEN/

ALE

A8P2.0
P2.1 A9
P2.2 A10
P2.3 A11
P2.4 A12
P2.5 A13
P2.6 A14
P2.7 A15

1 Mbit 1 Mbit
BANK0, BANK1 BANK2, BANK3

OE/ OE/

A16

The following figure illustrates the memory map for this example.

ROM ROMROM ROM

Bank #0 Bank #1 Bank #2 Bank #3

0000H

FFFFH

8051 Utilities 55

1
Two 128KB EPROMs are used in this hardware configuration. The bank
switching can be implemented by using two bank select address lines (Port 1.4
and Port 1.5). L51_BANK.A51 can be configured as follows for this hardware
configuration.

?N_BANKS EQU 4 ; Four banks are required.
?B_MODE EQU 0 ; 8051 port is used.
?B_PORT EQU 090H ; Port 1 as address line.
?B_FIRSTBIT EQU 4 ; P1.4 is the 1st address line.

The BL51 code banking linker/locator automatically places copies of the code
and data in the common area into each bank so that the contents of all EPROM
banks are identical in the address range of the common area. The BANKAREA
directive should not be specified since the default setting already defines address
space 0000h to 0FFFFh as the bank area.

Banking With a 32 KByte Common Area and Four 16 KByte
Banks

This example demonstrates the configuration required to bank switch using four
16 KByte EPROMs. The application uses a EPROM with on-chip bank
switching logic. The following figure illustrates the hardware schematic.

LATCH EPROM EPROM
8051

EN

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7

CE/ CE/

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7AD7

AD6
AD5
AD4
AD3
AD2
AD1
AD0

PSEN/
ALE

A8 P2.0
P2.1A9
P2.2A10
P2.3A11
P2.4A12
P2.5A13
P2.6A14
P2.7A15

32 KB 16KB*4
0H - 7FFFH 8000H - 0BFFFH

OE/ OE/

WR/ P3.6

A8
A9

A10
A11
A12
A13
A14

WR/

56 Chapter 1. BL51 Code Banking Linker/Locator

1
The following figure illustrates the memory map for this example.

ROM ROM

ROM

ROM ROM

Common

Area

Bank #0 Bank #1 Bank #2 Bank #3

0000h

FFFFh

FFFFh

0000h

The hardware consists of four memory banks with 16 KBytes each and a
common area consisting of 32 KBytes. The bank switching will be implemented
via XDATA address 8000h. L51_BANK.A51 can be configured as follows for
this hardware configuration.

?N_BANKS EQU 4 ; Four banks are required.
?B_MODE EQU 1 ; XDATA port is used.
?B_XDATAPORT EQU 08000H ; Port address is 8000H.
?B_FIRSTBIT EQU 0 ; Bit 0 is the 1st address line.

In the BL51 code banking linker/locator command line, the address space from
08000h to 0BFFFh should be defined as the bank area using the BANKAREA
directive.

8051 Utilities 57

1BL51 Directive Reference

This section lists all BL51 directives in alphabetical order.

Many of the BL51 code banking linker/locator directives allow you to specify
optional arguments and parameters in parentheses immediately following the
directive. The following table lists the types of arguments that are allowed with
certain directives.

Argument Description

address A 16-bit value representing a code or data memory location.

filename The name of a DOS file which must adhere to the following format:

!drive :" !directory \" file !. ext"
where

drive is a valid disk drive letter (A-Z).

directory is the name of a valid MS-DOS directory path.

file is the file name.

ext is the file extension.

modname A module name which may be up to 40 characters long and must adhere
to the following format:

{ A—Z | ? | _ | @ } !{ A—Z | 0—9 | ? | _ | @ }"
segname A segment name which may be up to 40 characters long and must

adhere to the following format:

{ A—Z | ? | _ | @ } !{ A—Z | 0—9 | ? | _ | @ }"
sfname A segment or function name which may be up to 40 characters long and

must adhere to the following format:

{ A—Z | ? | _ | @ } !{ A—Z | 0—9 | ? | _ | @ }"
value A 16-bit value, for example, 1011B, 2048D, or 0D5FFh.

58 Chapter 1. BL51 Code Banking Linker/Locator

1
BANKAREA

Abbreviation: BA

Arguments: BANKAREA (start_address, end_address)

Default: None

Description: Use the BANKAREA directive to specify the starting and
ending address of the area where the code banks will be
located. The addresses specified should reflect the actual
address where the code bank ROMs are physically mapped.
All segments that are assigned to a bank will be located
within this address range unless they are defined differently
using the BANKx directive. Refer to “Bank Switching
Directives” on page 43 for more information about the code
banking directives.

NOTE
This control is not available in L51.

See Also: BANKx, COMMON

Example: BL51 COMMON{C_ROOT.OBJ}, &
>> BANK0{C_BANK0.OBJ}, &
>> BANK0{C_BANK0.OBJ}, &
>> BANK1{C_BANK1.OBJ}, &
>> BANK2{C_BANK2.OBJ} &
>> TO MYPROG.ABS &
>> BANKAREA(8000H,0FFFFH)

8051 Utilities 59

1
BANKx

Abbreviation: B0, B1, B2, … B30, B31

Arguments: BANKx {filename !(sfname)"!, filename …"}
BANKx (!start_address !,""!sfname !(address)"

!, sfname…"")

Default: None

Description: Use the BANKx directive to specify object modules, library
files, and segments to include in a specific code bank. The x
in the BANKx directive should be replaced by the actual
bank number which may be a number from 0 to 31. Refer to
“Bank Switching Directives” on page 43 for more
information about the code banking directives.

NOTE
This control is not available in L51.

See Also: BANKAREA, COMMON

Example: BL51 COMMON{C_ROOT.OBJ}, &
>> BANK0{C_BANK0.OBJ}, &
>> BANK1{C_BANK1.OBJ}, &
>> BANK2{C_BANK2.OBJ} &
>> TO MYPROG.ABS &
>> BANKAREA(8000H,0FFFFH)

60 Chapter 1. BL51 Code Banking Linker/Locator

1
BIT

Abbreviation: BI

Arguments: BIT ({ address | segname !(address)"!, …"})

Description: The BIT directive allows you to specify:

′ The starting address for segments placed in the
bit-addressable internal data space

′ The order of segments within the bit-addressable
internal data space

′ The absolute memory location of segments in the
bit-addressable internal data space.

Addresses that you specify with the BIT directive are bit
addresses. In the 8051, bit addresses 00h through 7Fh
reference bits in internal data memory bytes from byte
address 20h to 2Fh (16 bytes of 8 bits each, 16 × 8 = 128 =
80h). Bit addresses that are evenly divisible by 8 reference
the low-order bit for its corresponding byte and are also
considered to be aligned on a byte border. A DATA
segment that is bit-addressable can be located with the BIT
directive; however, the bit address specified must lie on a
byte boundary. The bit address must be evenly divisible
by 8. Refer to “Segment Size and Location Directives” on
page 25 for more information about this directive.

See Also: CODE, DATA, IDATA, XDATA

Example: BL51 MYPROG.OBJ BIT(20h.2)

BL51 MYPROG.OBJ,A.OBJ,B.OBJ,C.OBJ BIT(?DT?A,?DT?B,?DT?C)

BL51 MYPROG.OBJ,A.OBJ,B.OBJ BIT(?DT?A(28h),?DT?B(30h))

8051 Utilities 61

1
CODE

Abbreviation: CO

Arguments: CODE ({ address | segname !(address)" !, …"})

Description: The CODE directive allows you to specify:

′ The starting address for segments placed in the code
memory space

′ The order of segments within the code memory space

′ The absolute memory location of segments in the code
memory space.

Refer to “Segment Size and Location Directives” on page 25
for more information about this directive.

See Also: BIT, DATA, IDATA, XDATA

Example: BL51 MYPROG.OBJ CODE(4000h)

BL51 MYPROG.OBJ CODE(?PR?FUNC1?MYPROG,?PR?FUNC2?MYPROG)

BL51 MYPROG.OBJ &
>> CODE(?PR?FUNC1?MYPROG(1000h), &
>> ?PR?FUNC2?MYPROG(2000h))

62 Chapter 1. BL51 Code Banking Linker/Locator

1
COMMON

Abbreviation: CO

Arguments: COMMON {filename !(sfname)"!, filename …"}
COMMON (!saddr !,""!sfname!(addr)"!, sfname …"")

Default: None

Description: The COMMON directive allows you to specify object
modules, library files, and segments to include in the
common code area when using bank switching. Refer to
“Bank Switching Directives” on page 43 for more
information about the code banking directives.

NOTE
This control is not available in L51.

See Also: BANKx, BANKAREA

Example: BL51 COMMON{C_ROOT.OBJ}, &
>> BANK0{C_BANK0.OBJ}, &
>> BANK1{C_BANK1.OBJ}, &
>> BANK2{C_BANK2.OBJ} &
>> TO MYPROG.ABS &
>> BANKAREA(8000H,0FFFFH)

8051 Utilities 63

1
DATA

Abbreviation: DA

Arguments: DATA ({address | segname !(address)"!, …"})

Description: The DATA directive allows you to specify:

′ The starting address for segments placed in the
directly-addressable internal data space

′ The order of segments within the directly-addressable
internal data space

′ The absolute memory location of segments in the
directly-addressable internal data space.

Refer to “Segment Size and Location Directives” on page 25
for more information about this directive.

See Also: BIT, CODE, IDATA, XDATA

Example: BL51 MYPROG.OBJ DATA(30h)
BL51 MYPROG.OBJ,A.OBJ,B.OBJ,C.OBJ
DATA(?DT?A,?DT?B,?DT?C)
BL51 MYPROG.OBJ,A.OBJ,B.OBJ DATA(?DT?A(28h),?DT?B(30h))

64 Chapter 1. BL51 Code Banking Linker/Locator

1
IDATA

Abbreviation: ID

Arguments: IDATA ({address | segname !(address)"!, …"})

Description: The IDATA directive allows you to specify:

′ The starting address for segments placed in the
indirectly-addressable internal data space

′ The order of segments within the indirectly-addressable
internal data space

′ The absolute memory location of segments in the
indirectly-addressable internal data space.

Refer to “Segment Size and Location Directives” on page 25
for more information about this directive.

See Also: BIT, CODE, DATA, XDATA

Example: BL51 MYPROG.OBJ IDATA(40h)

BL51 MYPROG.OBJ,A.OBJ,B.OBJ,C.OBJ &
>> IDATA(?ID?A,?ID?B,?ID?C)

BL51 MYPROG.OBJ,A.OBJ,B.OBJ &
>> IDATA(?ID?A(30h),?ID?B(40h))

8051 Utilities 65

1
IXREF

Abbreviation: IX

Arguments: IXREF !(NOGENERATED, NOLIBRARIES)"

Default: No cross reference is generated.

Description: The IXREF directive instructs the BL51 code banking
linker/locator to include a cross reference report in the
listing file. A cross reference report lists symbols, the area
of memory in which they are located (for example, CODE,
XDATA, DATA, and BIT), and the source modules in
which they are accessed.

The option NOGENERATED suppresses symbols starting
with ‘?’. These question mark symbols are normally
produced by the compiler for calling specific C functions or
passing parameters.

The option NOLIBRARIES suppresses those symbols
which are defined in a library file.

Example: BL51 myfile.obj IXREF

BL51 myfile.obj IXREF (NOGENERATED)

BL51 myfile.obj IXREF(NOLIBRARIES, NOGENERATED)

66 Chapter 1. BL51 Code Banking Linker/Locator

1
NAME

Abbreviation: NA

Arguments: NAME (modname)

Default: The basename of the first object file in the input list is used.

Description: Use the NAME directive to specify a module name for the
absolute object module that the BL51 code banking
linker/locator generates. The NAME directive may be
accompanied by the module name (in parentheses) that you
want to assign. Refer to “Output File Directives” on page
22 for more information about this directive.

Example: BL51 MYPROG.OBJ TO MYPROG.ABS NAME(BIGPROG)

8051 Utilities 67

1
NOAMAKE

Abbreviation: None

Arguments: None

Default: AMAKE

Description: The NOAMAKE directive allows you to direct the linker to
exclude AMAKE information from the generated absolute
object file. By default, the BL51 code banking
linker/locator generates object modules that include records
containing time and date information for the source files and
include files used to build specific object modules.

Example: BL51 MYPROG.OBJ TO MYPROG.ABS NOAMAKE

68 Chapter 1. BL51 Code Banking Linker/Locator

1
NODEBUGLINES

Abbreviation: NODL

Arguments: None

Default: DEBUGLINES

Description: The NODEBUGLINES directive directs the BL51 code
banking linker/locator to exclude line number information
from the object file. Refer to “Output File Directives” on
page 22 for more information about this directive.

See Also: DEBUGLINES

Example: BL51 MYPROG.OBJ NODEBUGLINES

8051 Utilities 69

1
NODEBUGPUBLICS

Abbreviation: NODP

Arguments: None

Default: DEBUGPUBLICS

Description: The NODEBUGPUBLICS directive directs the BL51 code
banking linker/locator to exclude public symbol information
from the object file. Refer to “Output File Directives” on
page 22 for more information about this directive.

See Also: DEBUGPUBLICS

Example: BL51 MYPROG.OBJ NODEBUGPUBLICS

70 Chapter 1. BL51 Code Banking Linker/Locator

1
NODEBUGSYMBOLS

Abbreviation: NODS

Arguments: None

Default: DEBUGSYMBOLS

Description: The NODEBUGSYMBOLS directive directs the BL51
code banking linker/locator to exclude local symbol
information from the object file. Refer to “Output File
Directives” on page 22 for more information about this
directive.

See Also: DEBUGSYMBOLS

Example: BL51 MYPROG.OBJ NODEBUGSYMBOLS

8051 Utilities 71

1
NODEFAULTLIBRARY

Abbreviation: NLIB

Arguments: None

Default: Library files are searched to resolve external references.

Description: Use the NODEFAULTLIBRARY directive to prevent the
BL51 code banking linker/locator from including modules
from the run-time libraries.

Example: BL51 MYPROG.OBJ NODEFAULTLIBRARY

72 Chapter 1. BL51 Code Banking Linker/Locator

1
NOLINES

Abbreviation: NOLI

Arguments: None

Default: LINES

Description: The NOLINES directive prevents the BL51 code banking
linker/locator from including line number information in the
listing file. Refer to “Listing File Directives” on page 17 for
more information about this directive.

See Also: LINES

Example: BL51 MYPROG.OBJ NOLINES

8051 Utilities 73

1
NOMAP

Abbreviation: NOMA

Arguments: None

Default: MAP

Description: The NOMAP directive prevents the BL51 code banking
linker/locator from including the memory map in the listing
file. Refer to “Listing File Directives” on page 17 for more
information about this directive.

See Also: MAP

Example: BL51 MYPROG.OBJ NOMAP

74 Chapter 1. BL51 Code Banking Linker/Locator

1
NOPUBLICS

Abbreviation: NOPU

Arguments: None

Default: PUBLICS

Description: The NOPUBLICS directive instructs the BL51 code
banking linker/locator to exclude public symbols from the
listing file. Refer to “Listing File Directives” on page 17 for
more information about this directive.

See Also: PUBLICS

Example: BL51 MYPROG.OBJ NOPUBLICS

8051 Utilities 75

1
NOSYMBOLS

Abbreviation: NOSY

Arguments: None

Default: SYMBOLS

Description: The NOSYMBOLS directive instructs the BL51 code
banking linker/locator to exclude local symbols from the
listing file. Refer to “Listing File Directives” on page 17 for
more information about this directive.

See Also: SYMBOLS

Example: BL51 MYPROG.OBJ NOSYMBOLS

76 Chapter 1. BL51 Code Banking Linker/Locator

1
OVERLAY / NOOVERLAY

Abbreviation: OL / NOOL

Arguments: OVERLAY (sfname { ! | ~ } sfname !, …")

OVERLAY (sfname { ! | ~ } (sfname, sfname !, …")!, …")

OVERLAY (sfname ! *)

OVERLAY (* ! sfname)

Default: OVERLAY

Description: The OVERLAY directive allows you to control the inter-
segment references that the BL51 code banking
linker/locator uses in its overlay analysis. The OVERLAY
directive may be specified a number of times in the
command line for each reference. The general format of the
overlay parameter may be any one of the following:

Directive Specification Description

OVERLAY (* ! sfname) Used to add new roots for
sfname.

OVERLAY (sfname ! *) Used to exclude sfname
from the overlay analysis
and process it in a normal
fashion. This has no
influence on the overlay
evaluation of other
segments.

OVERLAY (sfname ! sfname1)
OVERLAY (sfname ! (sfname1, sfname2))

Used to add references to
segments or functions.

OVERLAY (sfname ~ sfname1)
OVERLAY (sfname ~ (sfname1, sfname2))

Used to delete or remove
references between
segments or functions.

Use the NOOVERLAY directive to disable overlay analysis
and implementation. When this directive is specified on the
command line, the BL51 code banking linker/locator does
not overlay variables and function argument data space.

8051 Utilities 77

1
Examples: BL51 MYPROG.OBJ OVERLAY(*! (TASK1, TASK2))

BL51 SAMPLE.OBJ OVERLAY (FUNC1 ! *)

BL51 CMODUL1.OBJ OVERLAY (FUNC1 ! (FUNC2, FUNC3))

BL51 MAINMOD.OBJ, TEXTOUT.OBJ &
>> OVERLAY (FUNC1 ~ ?CO?MAINMOD, FUNC2 ~ ?CO?MAINMOD)

BL51 MYPROG.OBJ NOOVERLAY

78 Chapter 1. BL51 Code Banking Linker/Locator

1
PAGELENGTH

Abbreviation: PL

Arguments: PAGELENGTH (value)

Default: PAGELENGTH (68)

Description: The PAGELENGTH directive sets the maximum number
of lines per page for the listing file. The minimum page
length is 10 lines. Refer to “Listing File Directives” on page
17 for more information about this directive.

See Also: PAGEWIDTH

Example: BL51 PROG.OBJ TO PROG.ABS PAGELENGTH(50) PAGEWIDTH(100)

8051 Utilities 79

1
PAGEWIDTH

Abbreviation: PW

Arguments: PAGEWIDTH (value)

Default: PAGEWIDTH (78)

Description: The PAGEWIDTH directive defines the maximum width of
lines in the listing file. The page width may be set to a
number in the 72 to 132 range. Refer to “Listing File
Directives” on page 17 for more information about this
directive.

See Also: PAGELENGTH, PRINT

Example: BL51 PROG.OBJ TO PROG.ABS PAGELENGTH(50) PAGEWIDTH(100)

80 Chapter 1. BL51 Code Banking Linker/Locator

1
PDATA

Abbreviation: None

Arguments: PDATA (address)

Description: The PDATA directive allows you to specify the starting
address in external data space for PDATA segments. You
must enter the starting address immediately following the
PDATA directive on the command line. The address must
be enclosed in parentheses. Refer to “Segment Size and
Location Directives” on page 25 for more information about
this directive.

See Also: XDATA

Example: BL51 MYPROG.OBJ PDATA(8000h)

8051 Utilities 81

1
PRECEDE

Abbreviation: PC

Arguments: PRECEDE (segname !(address)"!, …")

Description: The PRECEDE directive allows you to specify segments
that lie in the internal data memory that should precede all
other segments in that memory space. Segments that you
specify with this directive are located after the BL51 code
banking linker/locator has located register banks and any
absolute BIT, DATA, and IDATA segments, but before any
other segments in the internal data memory. Refer to
“Segment Size and Location Directives” on page 25 for
more information about this directive.

See Also: STACK

Example: BL51 MYPROG.OBJ,A.OBJ,B.OBJ PRECEDE(?DT?A,?DT?B)

BL51 MYPROG.OBJ,A.OBJ,B.OBJ &
>> PRECEDE(?DT?A(09h),?DT?B(13h))

82 Chapter 1. BL51 Code Banking Linker/Locator

1
PRINT

Abbreviation: PR

Arguments: PRINT (filename)

Default: The listing file is generated using the basename of the output
file.

Description: The PRINT directive allows you to specify the name of the
listing file that is generated by the BL51 code banking
linker/locator. The name must be enclosed in parentheses
immediately following the PRINT directive on the
command line. Refer to “Listing File Directives” on page
17 for more information about this directive.

See Also: PAGELENGTH, PAGEWIDTH

Example: BL51 MYPROG.OBJ TO MYPROG.ABS PRINT(OUTPUT.MAP)

8051 Utilities 83

1
RAMSIZE

Abbreviation: RS

Arguments: RAMSIZE (value)

Default: RAMSIZE (128)

Description: The RAMSIZE directive allows you to specify the number
of bytes of internal data memory that are available in your
target 8051 derivative. The number of bytes must be a
number between 64 and 256. This number must be enclosed
in parentheses. Refer to “Segment Size and Location
Directives” on page 25 for more information about this
directive.

Example: BL51 MYPROG.OBJ RAMSIZE(256)

84 Chapter 1. BL51 Code Banking Linker/Locator

1
REGFILE

Abbreviation: RF

Arguments: REGFILE (filename)

Description: The REGFILE directive allows you to specify the name of
the register usage file generated by the BL51 code banking
linker/locator. The information in this file is used by the
C51 compiler when generating code for each function
invocation. The C51 compiler uses the register usage
information generated by the linker to optimize the use of
registers when passing values to and returning values from
external functions. This directive facilitates global register
optimization.

Example: BL51 MYPROG.OBJ,A.OBJ,B.OBJ REGFILE(PROG.REG)

8051 Utilities 85

1
RTX51

Abbreviation: None

Arguments: None

Default: None

Description: The RTX51 directive specifies to the BL51 code banking
linker/locator that the application should be linked for use
with the RTX51 Full Real-Time Multitasking Operating
System. This involves resolving references within your
program to RTX51 Full functions found in the RTX51 Full
library.

NOTE
This control is not available in L51.

See Also: RTX51TINY

Example: BL51 RTX_EX1.OBJ RTX51

86 Chapter 1. BL51 Code Banking Linker/Locator

1
RTX51TINY

Abbreviation: None

Arguments: None

Default: None

Description: The RTX51TINY directive specifies to the BL51 code
banking linker/locator that the application should be linked
for use with the RTX51 Tiny Real-Time Multitasking
Operating System. This involves resolving references
within your program to RTX51 Tiny functions found in the
RTX51 Tiny library.

NOTE
This control is not available in L51.

See Also: RTX51

Example: BL51 RTX_EX1.OBJ RTX51TINY

8051 Utilities 87

1
STACK

Abbreviation: ST

Arguments: STACK (segname !(address)"!, …")

Description: The STACK directive allows you to specify the segments
which are to be located in the uppermost IDATA memory
space in internal data memory. The segments you specify
with this directive will follow all other segments in the
internal data memory space. Refer to “Segment Size and
Location Directives” on page 25 for more information about
this directive.

See Also: PRECEDE

Example: BL51 MYPROG.OBJ,A.OBJ,B.OBJ STACK(?DT?A,?DT?B)

BL51 MYPROG.OBJ,A.OBJ,B.OBJ STACK(?DT?A(69h),?DT?B(73h))

88 Chapter 1. BL51 Code Banking Linker/Locator

1
XDATA

Abbreviation: XD

Arguments: XDATA ({address | segname !(address)"!, …"})

Description: The XDATA directive allows you to specify:

′ The starting address for segments placed in the external
data space

′ The order of segments within the external data space

′ The absolute memory location of segments in the
external data space.

Refer to “Segment Size and Location Directives” on page 25
for more information about this directive.

See Also: BIT, CODE, DATA, IDATA, PDATA

Example: BL51 MYPROG.OBJ XDATA(1000h)

BL51 MYPROG.OBJ,A.OBJ,B.OBJ,C.OBJ &
>> XDATA(?XD?A,?XD?B,?XD?C)

BL51 MYPROG.OBJ,A.OBJ,B.OBJ &
>> XDATA(?XD?A(100h),?XD?B(200h))

8051 Utilities 89

1BL51 Error Messages

The BL51 code banking linker/locator generates error messages that describe
warnings, non-fatal errors, fatal errors, and exceptions.

Fatal errors immediately abort the BL51 code banking linker/locator operation.

Errors and warnings do not abort the BL51 code banking linker/locator
operation; however, they may result in an output module that cannot be used.
Errors and warnings generate messages that may or may not have been intended
by the user. The listing file can be very useful in such an instance. Error and
warning messages are displayed in the listing file as well as on the screen.

This section displays all the BL51 code banking linker/locator error messages,
their causes, and any recovery actions.

Warnings

Warning Warning Message and Description

1 UNRESOLVED EXTERNAL SYMBOL
SYMBOL: external-name
MODULE: filename (modulename)
The specified external symbol, requested in the specified module, has no
corresponding PUBLIC symbol in any of the input files.

2 REFERENCE MADE TO UNRESOLVED EXTERNAL
SYMBOL: external-name
MODULE: filename (modulename)
ADDRESS: code-address
The specified unresolved external symbol is referenced at the specified code
address.

3 ASSIGNED ADDRESS NOT COMPATIBLE WITH ALIGNMENT
SEGMENT: segment–name
The address specified for the segment is not compatible with the alignment of the
segment declaration.

4 DATA SPACE MEMORY OVERLAP
FROM: byte.bit address
TO: byte.bit address
The specified area of the on-chip data RAM is occupied by more than one
segment.

90 Chapter 1. BL51 Code Banking Linker/Locator

1
Warning Warning Message and Description

5 CODE SPACE MEMORY OVERLAP
FROM: byte address
TO: byte address
The specified area of the code memory is occupied by more than one segment.

6 XDATA SPACE MEMORY OVERLAP
FROM: byte address
TO: byte address
The specified area of the external data memory is occupied by more than one
segment.

7 MODULE NAME NOT UNIQUE
MODULE: filename (modulename)
The specified module name is used for more than one module. The specified
module name is not processed.

8 MODULE NAME EXPLICITLY REQUESTED FROM ANOTHER FILE
MODULE: filename (modulename)
The specified module name is requested in the invocation line of another file that
has not yet been processed. The specified module name is not processed.

9 EMPTY ABSOLUTE SEGMENT
MODULE: filename (modulename)
The specified module contains an empty absolute segment. This segment is not
located and may be overlapped with another segment without any additional
message.

10 CANNOT DETERMINE ROOT SEGMENT
The Linker/Locator has recognized the C51 compiler or PL/M-51 input files and
tries to process a flow analysis. However it is impossible to determine the root
segment. This error occurs if the main program is called by an assembly module.
In this case the available references (calls) must be modified with the OVERLAY
directive.

11 CANNOT FIND SEGMENT OR FUNCTION NAME
NAME: overlay-control-name
A segment or function name defined in the OVERLAY directive cannot be found in
the object modules.

12 NO REFERENCE BETWEEN SEGMENTS
SEGMENT1: segment-name
SEGMENT2: segment-name
An attempt was made to delete a reference or call between two non-existent
functions or segments, with the OVERLAY directive.

8051 Utilities 91

1
Warning Warning Message and Description

13 RECURSIVE CALL TO SEGMENT
SEGMENT: segment-name
CALLER: segment-name
The specified segment is called recursively from CALLER specified segments.
Recursive calls are not allowed in C51 and PL/M-51 programs.

14 INCOMPATIBLE MEMORY MODEL
MODULE: filename (modulename)
MODEL: memory model
The specified module is not compiled in the same memory model as the former
compiled modules. The memory model of the improper module is showed by
MODEL.

15 MULTIPLE CALL TO SEGMENT
SEGMENT: segment-name
CALLER1: segment-name
CALLER2: segment-name
The specified segment is called from two levels, CALLER1, and CALLER2; e.g.,
main and interrupt program. This has the same effect as a recursive call and may
thus lead to the overwriting of parameters or data.

16 UNCALLED SEGMENT, IGNORED FOR OVERLAY PROCESS
SEGMENT: segment-name
This warning occurs when functions which were not previously called are contained
in a program (e.g., for test purposes). The function specified is excluded from the
overlay process in this case. It is possible that the program then occupies more
memory as during a call of the specified segment.

17 INTERRUPT FUNCTION IN BANKS NOT ALLOWED
SYMBOL: function-name
SPACE: code-bank
The specified C function is an interrupt function (a C51 function) that was specified
to be located in a code bank. Interrupt functions cannot be located in a code bank.

92 Chapter 1. BL51 Code Banking Linker/Locator

1 Non-Fatal Errors

Error Error Message and Description

101 SEGMENT COMBINATION ERROR
SEGMENT: segment-name
MODULE: filename (modulename)
The attributes of the specified partial segment in the specified module cannot be
combined with the attributes of the previous defined partial segments of the same
name. The partial segment is ignored.

102 EXTERNAL ATTRIBUTE MISMATCH
SYMBOL: external-name
MODULE: filename (modulename)
The attributes of the specified external symbol in the specified module do not
match the attributes of the previously defined external symbols. The specified
symbol is ignored.

103 EXTERNAL ATTRIBUTE DO NOT MATCH PUBLIC
SYMBOL: public-name
MODULE: filename (modulename)
The attributes of the specified public symbols in the specified module do not match
the attributes of the previous defined external symbols. The specified symbol is
ignored.

104 MULTIPLE PUBLIC DEFINITIONS
SYMBOL: public-name
MODULE: filename (modulename)
The specified public symbol in the specified module has already been defined in a
previously processed file.

105 PUBLIC REFERS TO IGNORED SEGMENT
SYMBOL: public-name
SEGMENT: segment-name
The specified public symbol is defined in the specified segment. It cannot be
processed on account of an error. The public symbol is therefore ignored.

106 SEGMENT OVERFLOW
SEGMENT: segment-name
The specified segment is longer than 64 KByte and cannot be processed.

107 ADDRESS SPACE OVERFLOW
SPACE: space-name
SEGMENT: segment-name
The specified segment cannot be located at the specified address space. The
segment is ignored.

8051 Utilities 93

1
Error Error Message and Description

108 SEGMENT IN LOCATING CONTROL CANNOT BE ALLOCATED
SEGMENT: segment-name
The specified segment in the invocation line cannot be processed on account of its
attributes.

109 EMPTY RELOCATABLE SEGMENT
SEGMENT: segment-name
The specified segment after combination has a zero size. The specified segment
is ignored.

110 CANNOT FIND SEGMENT
SEGMENT: segment-name
The specified segment is contained in the invocation line but cannot be found in an
input module. The specified segment is ignored.

111 SPECIFIED BIT ADDRESS NOT ON BYTE BOUNDARY
SEGMENT: segment-name
The specified segment contained in the BIT directive is a DATA segment. The
specified BIT address however is not on a byte boundary. The segment is
ignored.

112 SEGMENT TYPE NOT LEGAL FOR COMMAND
SEGMENT: segment-name
The specified segment cannot be processed because it does not have a legal
type.

114 SEGMENT DOES NOT FIT
SPACE: space-name
SEGMENT: segment-name
BASE: base-address
LENGTH: segment-length
The specified segment cannot be located at the base address in the specified
address space because of its length. The segment is ignored.

115 INPAGE SEGMENT IS GREATER THAN 256 BYTES
SEGMENT: segment-name
The specified segment with the attributes PAGE or INPAGE is greater than 256
bytes. The segment is ignored.

116 INBLOCK SEGMENT IS GREATER THAN 2048 BYTES
SEGMENT: segment-name
The specified segment with the attribute INBLOCK is greater than 2048 bytes.
The segment is ignored.

94 Chapter 1. BL51 Code Banking Linker/Locator

1
Error Error Message and Description

117 BIT ADDRESSABLE SEGMENT IS GREATER THAN 16 BYTES
SEGMENT: segment-name
The specified bit or data segment that was declared with the BITADDRESSABLE
attribute is larger than 16 bytes. The segment is not ignored.

118 REFERENCE MADE TO ERRONEOUS EXTERNAL
SYMBOL: symbol-name
MODULE: filename (modulename)
ADDRESS: code-address
The specified external symbol that was erroneously processed, is referenced in the
specified code address.

119 REFERENCE MADE TO ERRONEOUS SEGMENT
SEGMENT: symbol-name
MODULE: filename (modulename)
ADDRESS: code-address
The specified segment processed with an error, is referenced in the specified code
address.

120 CONTENT BELONGS TO ERRONEOUS SEGMENT
SEGMENT: segment-name
MODULE: filename (modulename)
A specified segment that was erroneously processed, is referenced at a specific
code address. The segment contents are not available.

121 IMPROPER FIXUP
MODULE: filename (modulename)
SEGMENT: segment-name
OFFSET: segment-address
After evaluation of absolute fixups, an address is not accessible. The improper
address along with the specific module name, partial segment, and segment
address are displayed. The fixup command is not processed.

122 CANNOT FIND MODULE
MODULE: filename (modulename)
The module specified in the invocation line cannot be found in the input file.

123 ABSOLUTE DATA/IDATA SEGMENT DOES NOT FIT
MODULE: filename (modulename)
FROM: byte address
TO: byte address
An absolute DATA or IDATA segment contained in the specified module is not
permissible due to a conflict with the value specified with the RAMSIZE directive.
The absolute segment cannot be located in the area which was output.

8051 Utilities 95

1
Error Error Message and Description

124 BANK SWITCH MODULE INCORRECT
This error message is issued when the bank switch module file (L51_BANK.OBJ)
contains invalid information or is not specified.

Fatal Errors

Error Error Message and Description

201 INVALID COMMAND LINE SYNTAX
command line
A syntax error is detected in the command line. The command line is displayed up
to and including the point of error.

202 INVALID COMMAND LINE, TOKEN TOO LONG
command line
The command line contains a token that is too long. The command line is
displayed up to and including the point of error.

203 EXPECTED ITEM MISSING
command line
An expected item is missing in the command line. The command line is displayed
up to and including the point of error.

204 INVALID KEYWORD
command line
The invocation line contains an invalid keyword. The command line is displayed
up to and including the point of error.

205 CONSTANT TOO LARGE
command line
A constant in the invocation line is larger than 0FFFFH. The command line is
displayed up to and including the point of error.

206 INVALID CONSTANT
command line
A constant in the invocation line is invalid; e.g., a hexadecimal number with a
leading letter. The command line is displayed up to and including the point of
error.

207 INVALID NAME
command line
A module or segment name is invalid. The command line is displayed up to and
including the point of error.

96 Chapter 1. BL51 Code Banking Linker/Locator

1
Error Error Message and Description

208 INVALID FILENAME
command line
A filename is invalid. The command line is displayed up to and including the point
of error.

209 FILE USED IN CONFLICTING CONTEXTS
FILE: filename
A specified filename is used for multiple files or used as an input as well as an
output file.

210 I/O ERROR ON INPUT FILE:
system error message
FILE: filename
An I/O error is detected by accessing an input file. A detailed error description of
the EXCEPTION messages is described afterwards.

211 I/O ERROR ON OUTPUT FILE:
system error message
FILE: filename
An I/O error is detected by accessing an output file. A detailed error description of
the EXCEPTION messages is described afterwards.

212 I/O ERROR ON LISTING FILE:
system error message
FILE: filename
An I/O error is detected by accessing a listing file. A detailed error description of
the EXCEPTION messages is described afterwards.

213 I/O ERROR ON WORK FILE:
system error message
An I/O error is detected by accessing a temporary work file of BL51. A detailed
error description of the EXCEPTION messages is described afterwards.

214 INPUT PHASE ERROR
MODULE: filename (modulename)
This error occurs when BL51 encounters different data during pass two. This error
could be the result of an assembly error.

215 CHECK SUM ERROR
MODULE: filename (modulename)
The checksum does not correspond to the contents of the file.

216 INSUFFICIENT MEMORY
The memory available for the execution of BL51 is used up.

8051 Utilities 97

1
Error Error Message and Description

217 NO MODULE TO BE PROCESSED
No module to be processed is found in the invocation line.

218 NOT AN OBJECT FILE
FILE: filename
The specified file is not an object file.

219 NOT AN 8051 OBJECT FILE
FILE:filename
The specified file is not a valid 8051 object file.

220 INVALID INPUT MODULE
FILE: filename
The specified input module is invalid. This error could be the result of an
assembler error.

221 MODULE SPECIFIED MORE THAN ONCE
command line
The invocation line contains the specified module more than once. The command
line is displayed up to and including the point of error.

222 SEGMENT SPECIFIED MORE THAN ONCE
command line
The invocation line contains the specified segment more than once. The
command line is displayed up to and including the point of error.

224 DUPLICATE KEYWORD OR CONFLICTING CONTROL
command line
The same keyword is contained in the invocation line more than once or
contradicts with other keywords. The command line is displayed up to and
including the point of error.

225 SEGMENT ADDRESS ARE NOT IN ASCENDING ORDER
command line
The base addresses for the segments are not displayed in ascending order during
the location control. The command line is displayed up to and including the point
of error.

226 SEGMENT ADDRESS INVALID FOR CONTROL
command line
The base addresses for the segments are invalid for the location control. The
command line is displayed up to and including the point of error.

98 Chapter 1. BL51 Code Banking Linker/Locator

1
Error Error Message and Description

227 PARAMETER OUT OF RANGE
command line
The specified value for the PAGEWIDTH or PAGELENGTH directive is out of the
acceptable range. The command line is displayed up to and including the point of
error.

228 RAMSIZE PARAMETER OUT OF RANGE
command line
The specified value for the RAMSIZE directive is out of the acceptable range. The
command line is displayed up to and including the point of error.

229 INTERNAL PROCESS ERROR
BL51 detects an internal processing error. Please contact your dealer.

230 START ADDRESS SPECIFIED MORE THAN ONCE
command line
The invocation line contains more than one start address for unnamed segment
group. The command is displayed up to and including the point of error.

231 ADDRESS RANGE FOR BANKAREA INCORRECT
Partial command line
The address space specified with the BANKAREA directive is invalid.

233 ILLEGAL USE OF * IN OVERLAY CONTROL
command line
The use of “* ! *” or “* ~ *” with the OVERLAY directive is illegal.

Exceptions

Exception messages are displayed with some error messages. The BL51 code
banking linker/locator exception messages that are possible are listed below:

Exception Exception Message and Description

0021H PATH OR FILE NOT FOUND
The specified path or filename is missing.

0026H ILLEGAL FILE ACCESS
An attempt was made to write to or delete a write-protected file.

0029H ACCESS TO FILE DENIED
The file indicated is a directory.

8051 Utilities 99

1
Exception Exception Message and Description

002AH I/O-ERROR
The drive being written to is either full or the drive was not ready.

0101H ILLEGAL CONTEXT
An attempt was made to access a file in an illegal context; e.g., the printer was
opened for reading.

100 Chapter 1. BL51 Code Banking Linker/Locator

1

8051 Utilities 101

2

Chapter 2. Application Examples
This chapter illustrates some of the linker directives that you may use during
project development. These examples use source files created with the C51
compiler and the A51 assembler.

C51 Example

This section describes a short 8051 program, developed with C51 compiler and
linked with the BL51 code banking linker/locator. This program demonstrates
the concept of modular programming development.

The program calculates the sum of two input numbers and displays the result.
Numbers are input with the getchar library function and results are output with
the printf library function. The program consists of three source modules which
are translated using the following command lines.

C51 CSAMPLE1.C DEBUG

C51 CSAMPLE2.C DEBUG

C51 CSAMPLE3.C DEBUG

The DEBUG parameter directs the compiler to include complete symbol
information in the object file.

After compilation, the files are linked using the BL51 code banking
linker/locator. The command line for the linker is:

BL51 CSAMPLE1.OBJ, CSAMPLE2.OBJ, CSAMPLE3.OBJ PRECEDE (?DT?CSAMPLE3) IXREF

The linker creates an absolute object module that is stored in the file CSAMPLE1.
This file may be immediately loaded and processed by the dScope-51 simulator
or may be used to create an Intel HEX file using the OH51 object to hex
converter. In the above linker command line, the PRECEDE directive causes
the BL51 code banking linker/locator to locate the ?DT?CSAMPLE3 segment
before other internal data memory segments. This is explained in detail below.
The IXREF directive includes a cross reference report of all public and external
symbols in the linker listing file.

102 Chapter 2. Application Examples

2

CSAMPLE1.C Listing File
C51 COMPILER, CSAMPLE1 10/09/88 14:33:05 PAGE 1

DOS C51 COMPILER, COMPILATION OF MODULE CSAMPLE1
OBJECT MODULE PLACED IN CSAMPLE1.OBJ
COMPILER INVOKED BY: C51 CSAMPLE1.C DEBUG

stmt level source

 1 /* csample1.c: C51 Compiler Sample Program */
 2
 3
 4 #include <reg51.h> /* define 8051 registers */
 5 #include <stdio.h> /* define I/O functions */
 6
 7 extern int getnumber ();
 8 extern output (int);
 9
 10 main () { /* main program */
 11 1 int number1, number2, result; /* define operation registers */
 12 1 bit operation; /* define operation */
 13 1
 14 1 SCON = 0x52; /* SCON */ /* setup serial port control */
 15 1 TMOD = 0x20; /* TMOD */ /* hardware (2400 BAUD @12MHZ) */
 16 1 TCON = 0x69; /* TCON */
 17 1 TH1 = 0xf3; /* TH1 */
 18 1
 19 1 printf ("\n\nC-COMPILER-51 demonstration program\n\n");
 20 1
 21 1 while (1) { /* repeat forever */
 22 2 number1 = getnumber (); /* read number1 */
 23 2 number2 = getnumber (); /* read number2 */
 24 2 printf ("Input operation: '+' (ADD) or '-' (SUB) ? ");
 25 2 operation = (getchar () == '+'); /* get operation */
 26 2 output (operation ? (number1 + number2) /* perform operation */
 27 2 : (number1 - number2));
 28 2 }
 29 1 }

C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)

CSAMPLE2.C Listing File
C51 COMPILER, CSAMPLE2 10/09/88 14:33:08 PAGE 1

DOS C51 COMPILER, COMPILATION OF MODULE CSAMPLE2
OBJECT MODULE PLACED IN CSAMPLE2.OBJ
COMPILER INVOKED BY: C51 CSAMPLE2.C DEBUG

stmt level source

 1 /* csample2.c: C-COMPILER-51 Sample Program */
 2 /* Copyright KEIL ELEKTRONIK GmbH, 1989 */
 3
 4 #include <stdio.h> /* define I/O functions */
 5
 6 getline (char *line) {
 7 1 while ((*line++ = getchar()) != '\n');
 8 1 }
 9
 10 int atoi (char *line) {
 11 1 bit sign;
 12 1 int number;

8051 Utilities 103

2

 13 1
 14 1 /* skip white space */
 15 1 for (; *line == ' ' || *line == '\n' || *line == '\t'; line++);
 16 1
 17 1 /* establish sign */
 18 1 sign = 1;
 19 1 if (*line == '+' || *line == '-') sign = (*line++ == '+');
 20 1
 21 1 /* compute decimal value */
 22 1 for (number=0; *line >= '0' && *line <= '9'; line++)
 23 1 number = (number * 10) + (*line - '0');
 24 1
 25 1 return (sign ? number : -number);
 26 1 }
 27
 28 unsigned int getnumber () {
 29 1 char line [40];
 30 1
 31 1 printf ("Input Number ? ");
 32 1 getline (line);
 33 1 return (atoi (line));
 34 1 }
 35

C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)

CSAMPLE3.C Listing File
C51 COMPILER, CSAMPLE3 10/09/88 14:33:13 PAGE 1

DOS C51 COMPILER, COMPILATION OF MODULE CSAMPLE3
OBJECT MODULE PLACED IN CSAMPLE3.OBJ
COMPILER INVOKED BY: C51 CSAMPLE3.C DEBUG

stmt level source

 1 /* csample3.c: C-COMPILER-51 Sample Program */
 2 /* Copyright KEIL ELEKTRONIK GmbH, 1989 */
 3
 4 #include <stdio.h> /* define I/O functions */
 5
 6 char dummy_buffer [25]; /* only for demonstration */
 7
 8 output (int number) {
 9 1 printf ("\nresult: %d\n\n", number);
 10 1 }

C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)

CSAMPLE Linker/Locator Listing File
MCS-51 LINKER / LOCATER BL51 DATE 10/09/88 PAGE 1

MS-DOS MCS-51 LINKER / LOCATER BL51, INVOKED BY:
BL51 CSAMPLE1.OBJ, CSAMPLE2.OBJ, CSAMPLE3.OBJ PRECEDE (?DT?SAMPLE3) IXREF

MEMORY MODEL: SMALL

INPUT MODULES INCLUDED:
 CSAMPLE1.OBJ (CSAMPLE1)
 CSAMPLE2.OBJ (CSAMPLE2)
 CSAMPLE3.OBJ (CSAMPLE3)

104 Chapter 2. Application Examples

2

 C:\C\C51S.LIB (?C_STARTUP)
 C:\C\C51S.LIB (?C_CLDPTR)
 C:\C\C51S.LIB (?C_CSTPTR)
 C:\C\C51S.LIB (?C_IMUL)
 C:\C\C51S.LIB (?C_PLDIIDATA)
 C:\C\C51S.LIB (PRINTF)
 C:\C\C51S.LIB (GETCHAR)
 C:\C\C51S.LIB (?C_CLDOPTR)
 C:\C\C51S.LIB (?C_CCASE)
 C:\C\C51S.LIB (PUTCHAR)
 C:\C\C51S.LIB (_GETKEY)

LINK MAP OF MODULE: CSAMPLE1 (CSAMPLE1)

 TYPE BASE LENGTH RELOCATION SEGMENT NAME

 * * * * * * * D A T A M E M O R Y * * * * * * *
 REG 0000H 0008H ABSOLUTE "REG BANK 0"
 DATA 0008H 0019H UNIT ?DT?CSAMPLE3
 DATA 0021H 0001H BIT_ADDR ?DB?PRINTF?PRINTF
 BIT 0022H.0 0000H.1 UNIT ?BI?GETCHAR
 BIT 0022H.1 0000H.2 UNIT "BIT-GROUP"
 0022H.3 0000H.5 *** GAP ***
 DATA 0023H 0001H UNIT ?DT?GETCHAR
 DATA 0024H 0043H UNIT "DATA-GROUP"
 IDATA 0067H 0001H UNIT ?STACK

 * * * * * * * C O D E M E M O R Y * * * * * * *
 CODE 0000H 0003H ABSOLUTE
 CODE 0003H 0052H UNIT ?CO?CSAMPLE1
 CODE 0055H 006AH UNIT ?PR?MAIN?CSAMPLE1
 CODE 00BFH 0010H UNIT ?CO?CSAMPLE2
 CODE 00CFH 00ECH UNIT ?PR?ATOI?CSAMPLE2
 CODE 01BBH 002EH UNIT ?PR?GETNUMBER?CSAMPLE2
 CODE 01E9H 0016H UNIT ?PR?GETLINE?CSAMPLE2
 CODE 01FFH 000EH UNIT ?CO?CSAMPLE3
 CODE 020DH 0016H UNIT ?PR?OUTPUT?CSAMPLE3
 CODE 0223H 000CH UNIT ?C_C51STARTUP
 CODE 022FH 00A8H UNIT ?C_LIB_CODE
 CODE 02D7H 0296H UNIT ?PR?PRINTF?PRINTF
 CODE 056DH 0013H UNIT ?PR?GETCHAR?GETCHAR
 CODE 0580H 0003H UNIT ?PR?GETCHAR?UNGETCHAR
 CODE 0583H 0029H UNIT ?PR?PUTCHAR?PUTCHAR
 CODE 05ACH 000AH UNIT ?PR?_GETKEY?_GETKEY

OVERLAY MAP OF MODULE: CSAMPLE1 (CSAMPLE1)

SEGMENT BIT-GROUP DATA-GROUP
 +--> CALLING SEGMENT START LENGTH START LENGTH

?C_C51STARTUP ----- ----- ----- -----
 +--> ?PR?MAIN?CSAMPLE1

?PR?MAIN?SAMPLE1 0022H.1 0000H.1 0024H 0006H
 +--> ?CO?CSAMPLE1
 +--> ?PR?PRINTF?PRINTF
 +--> ?PR?GETNUMBER?CSAMPLE2
 +--> ?PR?GETCHAR?GETCHAR
 +--> ?PR?OUTPUT?CSAMPLE3

?PR?PRINTF?PRINTF ----- ----- 0052H 0014H
 +--> ?C_LIB_CODE
 +--> ?PR?PUTCHAR?PUTCHAR

?PR?PUTCHAR?PUTCHAR ----- ----- 0066H 0001H

?PR?GETNUMBER?CSAMPLE2 ----- ----- 002AH 0028H
 +--> ?CO?CSAMPLE2
 +--> ?PR?PRINTF?PRINTF
 +--> ?PR?GETLINE?CSAMPLE2

8051 Utilities 105

2

 +--> ?PR?ATOI?CSAMPLE2

?PR?GETLINE?CSAMPLE2 ----- ----- 0052H 0003H
 +--> ?PR?GETCHAR?GETCHAR
 +--> ?C_LIB_CODE

?PR?GETCHAR?GETCHAR ----- ----- ----- -----
 +--> ?PR?_GETKEY?_GETKEY
 +--> ?PR?PUTCHAR?PUTCHAR

?PR?ATOI?CSAMPLE2 0022H.2 0000H.1 0052H 0005H
 +--> ?C_LIB_CODE

?PR?OUTPUT?CSAMPLE3 ----- ----- 002AH 0002H
 +--> ?CO?CSAMPLE3
 +--> ?PR?PRINTF?PRINTF

SYMBOL TABLE OF MODULE: CSAMPLE1 (CSAMPLE1)

VALUE TYPE NAME

------- MODULE CSAMPLE1
C:0055H PUBLIC MAIN
------- PROC MAIN
D:0024H SYMBOL NUMBER1
D:0026H SYMBOL NUMBER2
D:0028H SYMBOL RESULT
B:0022H.1 SYMBOL OPERATION
------- ENDPROC MAIN
C:0055H LINE# 10
C:0055H LINE# 14
C:0058H LINE# 15
C:005BH LINE# 16
C:005EH LINE# 17
C:0061H LINE# 19
C:0070H LINE# 21
C:0070H LINE# 22
C:0077H LINE# 23
C:007EH LINE# 24
C:008DH LINE# 25
C:009BH LINE# 27
C:00BEH LINE# 29
------- ENDMOD CSAMPLE1

------- MODULE CSAMPLE2
C:00CFH PUBLIC ATOI
C:01BBH PUBLIC GETNUMBER
C:01E9H PUBLIC GETLINE
------- PROC ATOI
D:0052H SYMBOL LINE
B:0022H.2 SYMBOL SIGN
D:0055H SYMBOL NUMBER
------- ENDPROC ATOI
C:00CFH LINE# 10
C:00CFH LINE# 15
C:0109H LINE# 18
C:010BH LINE# 19
C:0142H LINE# 22
C:0172H LINE# 23
C:019BH LINE# 22
C:01A8H LINE# 25
C:01BAH LINE# 26
------- PROC GETNUMBER
D:002AH SYMBOL LINE
------- ENDPROC GETNUMBER
C:01BBH LINE# 28
C:01BBH LINE# 31
C:01CAH LINE# 32
C:01D9H LINE# 33
C:01E8H LINE# 34
------- PROC GETLINE
D:0052H SYMBOL LINE

106 Chapter 2. Application Examples

2

------- ENDPROC GETLINE
C:01E9H LINE# 6
C:01E9H LINE# 7
C:01FEH LINE# 8
------- ENDMOD CSAMPLE2

------- MODULE CSAMPLE3
D:0008H PUBLIC DUMMY_BUFFER
C:020DH PUBLIC OUTPUT
------- PROC OUTPUT
D:002AH SYMBOL NUMBER
------- ENDPROC OUTPUT
C:020DH LINE# 8
C:020DH LINE# 9
C:0222H LINE# 10
------- ENDMOD CSAMPLE3

INTER-MODULE CROSS-REFERENCE LISTING

NAME USAGE MODULE NAMES

?ATOI?BIT. . . . BIT; CSAMPLE2
?ATOI?BYTE . . . DATA; CSAMPLE2
?C_CCASE CODE; ?C_CCASE PRINTF
?C_CLDOPTR . . . CODE; ?C_CLDOPTR PRINTF
?C_CLDPTR. . . . CODE; ?C_CLDPTR PRINTF CSAMPLE2
?C_CSTPTR. . . . CODE; ?C_CSTPTR PRINTF CSAMPLE2
?C_IMUL. CODE; ?C_IMUL CSAMPLE2
?C_PLDIIDATA . . CODE; ?C_PLDIIDATA PRINTF CSAMPLE2
?C_STARTUP . . . CODE; ?C_STARTUP CSAMPLE1
?GETLINE?BYTE. . DATA; CSAMPLE2
?GETNUMBER?BYTE. DATA; CSAMPLE2
?MAIN?BIT. . . . BIT; CSAMPLE1
?MAIN?BYTE . . . DATA; CSAMPLE1
?OUTPUT?BYTE . . DATA; CSAMPLE3 CSAMPLE1
?PRINTF?BYTE . . DATA; PRINTF CSAMPLE1 CSAMPLE2 CSAMPLE3
?PUTCHAR?BYTE. . DATA; PUTCHAR GETCHAR PRINTF
?SPRINTF?BYTE. . DATA; PRINTF
?UNGETCHAR?BYTE. DATA; GETCHAR
ATOI CODE; CSAMPLE2
DUMMY_BUFFER . . DATA; CSAMPLE3
GETCHAR. CODE; GETCHAR CSAMPLE1 CSAMPLE2
GETLINE. CODE; CSAMPLE2
GETNUMBER. . . . CODE; CSAMPLE2 CSAMPLE1
MAIN CODE; CSAMPLE1 ?C_STARTUP
OUTPUT CODE; CSAMPLE3 CSAMPLE1
PRINTF CODE; PRINTF CSAMPLE1 CSAMPLE2 CSAMPLE3
PUTCHAR. CODE; PUTCHAR GETCHAR PRINTF
SPRINTF. CODE; PRINTF
UNGETCHAR. . . . CODE; GETCHAR
_GETKEY. CODE; _GETKEY GETCHAR

In this application, the data segment ?DT?SAMPLE3 is 19H bytes long.
Because of its length, this segment can be located in the on-chip data memory
only by using the PRECEDE directive. Without this directive, the on-chip data
memory overflows (because the BIT segment is located first) and the memory
space that remains is too small for the STACK (on an 8051/31 CPU).

The following listing shows the data memory usage when the BL51 code
banking linker/locator is invoked without the PRECEDE directive.

 TYPE BASE LENGTH RELOCATION SEGMENT NAME

8051 Utilities 107

2

 * * * * * * * D A T A M E M O R Y * * * * * * *
 REG 0000H 0008H ABSOLUTE "REG BANK 0"
 DATA 0008H 0001H UNIT ?DT?GETCHAR
 0009H 0017H *** GAP ***
 DATA 0020H 0001H BIT_ADDR ?DB?PRINTF?PRINTF
 BIT 0021H.0 0000H.1 UNIT ?BI?GETCHAR
 BIT 0021H.1 0000H.2 UNIT "BIT-GROUP"
 0021H.3 0000H.5 *** GAP ***
 DATA 0022H 0019H UNIT ?DT?CSAMPLE3
 DATA 003BH 0043H UNIT "DATA-GROUP"
 IDATA 007EH 0001H UNIT ?STACK

Without the PRECEDE directive, the ?DT?CSAMPLE3 data segment is located
after the BIT segment and the STACK is located at 7Eh.

A51 Example

This section describes a short 8051 program, developed with the A51 assembler
and BL51 code banking linker/locator. The program displays the text
"PROGRAM TEST" using the putchar library function. The program consists
of three modules which should be assembled using the following command lines.

A51 ASAMPLE1.A51 DEBUG XREF

A51 ASAMPLE2.A51 DEBUG XREF

A51 ASAMPLE3.A51 DEBUG XREF

The XREF directive causes the A51 assembler to generate a cross reference
report of the symbols used in the module. The DEBUG directive includes
complete symbol information in the object file.

After assembly, the files are linked by the BL51 code banking linker/locator.
The command line for the linker is:

BL51 ASAMPLE1.OBJ, ASAMPLE2.OBJ, ASAMPLE3.OBJ PRECEDE (VAR1) IXREF

The linker creates an absolute object module that is stored in the file ASAMPLE1.
This file may be immediately loaded and processed by the dScope-51 simulator
or may be used to create an Intel HEX file using the OH51 object to hex
converter. In the above linker command line, the PRECEDE directive causes
the BL51 code banking linker/locator to locate the VAR1 segment before other
internal data memory segments. The IXREF directive includes a cross reference
report of all public and external symbols in the linker listing file.

108 Chapter 2. Application Examples

2

ASAMPLE1.A51 Listing File
A51 MACRO ASSEMBLER ASAMPLE1 DATE 24/08/87 PAGE 1

MS-DOS MACRO ASSEMBLER A51
OBJECT MODULE PLACED IN ASAMPLE1.OBJ
ASSEMBLER INVOKED BY: A51 ASAMPLE1.A51 DEBUG XREF

LOC OBJ LINE SOURCE

 1 NAME ASAMPLE
 2
 3 EXTRN CODE (PUT_CRLF, PUTSTRING)
 4 PUBLIC TXTBIT
 5
 6 PROG SEGMENT CODE
 7 CONST SEGMENT CODE
 8 VAR1 SEGMENT DATA
 9 BITVAR SEGMENT BIT
 10 STACK SEGMENT IDATA
 11
---- 12 RSEG STACK
0000 13 DS 10H ; 16 Bytes Stack
 14
 15 CSEG AT 0
 16 USING 0 ; Register-Bank 0
 17 ; Execution starts at address 0 on power-up.
0000 020000 F 18 JMP START
 19
---- 20 RSEG PROG
 21 ; first set Stack Pointer
0000 758100 F 22 START: MOV SP,#STACK-1
 23
 24 ; Initialize serial interface
 25 ; Using TIMER 1 to Generate Baud Rates
 26 ; Oscillator frequency = 11.059 MHz
0003 758920 27 MOV TMOD,#00100000B ;C/T = 0,
 Mode = 2
0006 758DFD 28 MOV TH1,#0FDH
0009 D28E 29 SETB TR1
000B 759852 30 MOV SCON,#01010010B
 31
 32 ; clear TXTBIT to read form CODE-Memory
000E C200 F 33 CLR TXTBIT
 34
 35 ; This is the main program. It is a loop,
 36 ; which displays the a text on the console.
0010 37 REPEAT:
 38 ; type message
0010 900000 F 39 MOV DPTR,#TXT
0013 120000 F 40 CALL PUTSTRING
0016 120000 F 41 CALL PUT_CRLF
 42 ; repeat
0019 80F5 43 SJMP REPEAT
 44 ;
---- 45 RSEG CONST
0000 54455354 46 TXT: DB 'TEST PROGRAM',00H
0004 2050524F
0008 4752414D
000C 00
 47
 48 ; only for demonstration
---- 49 RSEG VAR1
0000 50 DUMMY: DS 21H
 51
 52 ; TXTBIT = 0 read text from CODE Memory
 53 ; TXTBIT = 1 read text from XDATA Memory
---- 54 RSEG BITVAR
0000 55 TXTBIT: DBIT 1
 56

8051 Utilities 109

2

 57 END
 58

XREF SYMBOL TABLE LISTING
---- ------ ----- -------

N A M E T Y P E V A L U E ATTRIBUTES / REFERENCES

BITVAR . . B SEG 0000H REL=UNIT 9# 54
CONST. . . C SEG 000DH REL=UNIT 7# 45
DUMMY. . . D ADDR 0000H R SEG=VAR1 50#
PROG . . . C SEG 001BH REL=UNIT 6# 20
PUTSTRING. C ADDR ---- EXT 3 40
PUT_CRLF . C ADDR ---- EXT 3 41
REPEAT . . C ADDR 0010H R SEG=PROG 37# 43
ASAMPLE . . ---- ---- 1
SCON . . . D ADDR 0098H A 30
SP D ADDR 0081H A 22
STACK. . . I SEG 0010H REL=UNIT 10# 12 22
START. . . C ADDR 0000H R SEG=PROG 18 22#
TH1. . . . D ADDR 008DH A 28
TMOD . . . D ADDR 0089H A 27
TR1. . . . B ADDR 0088H.6 A 29
TXT. . . . C ADDR 0000H R SEG=CONST 39 46#
TXTBIT . . B ADDR 0000H.0 R PUB SEG=BITVAR 4 33 55#
VAR1 . . . D SEG 0021H REL=UNIT 8# 49

REGISTER BANK(S) USED: 0

ASSEMBLY COMPLETE, NO ERRORS FOUND

ASAMPLE2.A51 Listing File
A51 MACRO ASSEMBLER ASAMPLE2 DATE 24/08/87 PAGE 1

MS-DOS MACRO ASSEMBLER A51
OBJECT MODULE PLACED IN ASAMPLE2.OBJ
ASSEMBLER INVOKED BY: A51 ASAMPLE2.A51 DEBUG XREF

LOC OBJ LINE SOURCE

 1 NAME STRING_IO
 2 ;
 3 EXTRN BIT (TXTBIT)
 4 EXTRN CODE (PUTCHAR)
 5 PUBLIC PUT_CRLF, PUTSTRING
 6
 7 STRING_ROUTINES SEGMENT CODE
 8
---- 9 RSEG STRING_ROUTINES
 10 ; This routine outputs a CR and a LF
 000D 11 CR equ 0DH ; carriage return
 000A 12 LF equ 0AH ; line feed
 13
0000 14 PUT_CRLF:
0000 740D 15 MOV A,#CR
0002 120000 F 16 CALL PUTCHAR
0005 740A 17 MOV A,#LF
0007 120000 F 18 CALL PUTCHAR
000A 22 19 RET
 20
 21 ; Routine outputs a null-terminated string whose
 22 ; address is given in DPTR. The string can be
 23 ; located in CODE or XDATA memory depending on

110 Chapter 2. Application Examples

2

 24 ; the value of TXTBIT.
 25
000B 26 PUTSTRING:
 27 ; check TXTBIT
000B 200004 F 28 JB TXTBIT,PS1
000E E4 29 CLR A
000F 93 30 MOVC A,@A+DPTR
0010 8001 31 SJMP PS2
0012 E0 32 PS1: MOVX A,@DPTR
0013 6006 33 PS2: JZ EXIT
0015 120000 F 34 CALL PUTCHAR
0018 A3 35 INC DPTR
0019 80F0 36 SJMP PUTSTRING
001B 22 37 EXIT: RET
 38
 39 END
 40

XREF SYMBOL TABLE LISTING
---- ------ ----- -------

N A M E T Y P E V A L U E ATTRIBUTES / REFERENCES

CR. N NUMB 000DH A 11# 15
EXIT. C ADDR 001BH R SEG=STRING_ROUTINES 33 37#
LF. N NUMB 000AH A 12# 17
PS1 C ADDR 0012H R SEG=STRING_ROUTINES 28 32#
PS2 C ADDR 0013H R SEG=STRING_ROUTINES 31 33#
PUTCHAR C ADDR ---- EXT 4 16 18 34
PUTSTRING . . . C ADDR 000BH R PUB SEG=STRING_ROUTINES 5 26# 36
PUT_CRLF. . . . C ADDR 0000H R PUB SEG=STRING_ROUTINES 5 14#
STRING_IO . . . ---- ---- 1
STRING_ROUTINES C SEG 0000H REL=UNIT 7# 9
TXTBIT. B ADDR ---- EXT 3 28

REGISTER BANK(S) USED: 0

ASSEMBLY COMPLETE, NO ERRORS FOUND

ASAMPLE3.A51 Listing File
A51 MACRO ASSEMBLER ASAMPLE3 DATE 24/08/87 PAGE 1

MS-DOS MACRO ASSEMBLER A51
OBJECT MODULE PLACED IN ASAMPLE3.OBJ
ASSEMBLER INVOKED BY: A51 ASAMPLE3.A51 DEBUG XREF

LOC OBJ LINE SOURCE

 1 NAME CHAR_IO
 2 ;
 3 PUBLIC PUTCHAR
 4
 5 CHAR_ROUTINES SEGMENT CODE
 6 VAR2 SEGMENT DATA
 7
---- 8 RSEG CHAR_ROUTINES
 9
 10 ; This routine outputs a single character to
 11 ; console. The character is given in A.
0000 12 PUTCHAR:
0000 3099FD 13 JNB TI,$
0003 C299 14 CLR TI
0005 F599 15 MOV SBUF,A
0007 22 16 RET
 17

8051 Utilities 111

2

 18
 19 ; only for demonstration
---- 20 RSEG VAR2
0000 21 DUMMY: DS 40H
 22
 23
 24 END
 25

XREF SYMBOL TABLE LISTING
---- ------ ----- -------

N A M E T Y P E V A L U E ATTRIBUTES / REFERENCES

CHAR_IO . . . ---- ---- 1
CHAR_ROUTINES C SEG 0008H REL=UNIT 5# 8
DUMMY D ADDR 0000H R SEG=VAR2 21#
PUTCHAR . . . C ADDR 0000H R PUB SEG=CHAR_ROUTINES 3 12#
SBUF. D ADDR 0099H A 15
TI. B ADDR 0098H.1 A 13 14
VAR2. D SEG 0000H REL=UNIT 6# 20

REGISTER BANK(S) USED: 0

ASSEMBLY COMPLETE, NO ERRORS FOUND

ASAMPLE Linker/Locator Listing File
MCS-51 LINKER / LOCATER BL51 DATE 24/08/87 PAGE 1

MS-DOS MCS-51 LINKER / LOCATER BL51, INVOKED BY:
BL51 ASAMPLE1.OBJ, ASAMPLE2.OBJ, ASAMPLE3.OBJ PRECEDE (VAR1) IXREF

INPUT MODULES INCLUDED:
 ASAMPLE1.OBJ (ASAMPLE)
 ASAMPLE2.OBJ (STRING_IO)
 ASAMPLE3.OBJ (CHAR_IO)

LINK MAP OF MODULE: ASAMPLE1 (ASAMPLE)

 TYPE BASE LENGTH RELOCATION SEGMENT NAME

 * * * * * * * D A T A M E M O R Y * * * * * * *
 REG 0000H 0008H ABSOLUTE "REG BANK 0"
 DATA 0008H 0021H UNIT VAR1
 BIT 0029H.0 0000H.1 UNIT BITVAR
 0029H.1 0000H.7 *** GAP ***
 DATA 002AH 0040H UNIT VAR2
 IDATA 006AH 0010H UNIT STACK

 * * * * * * * C O D E M E M O R Y * * * * * * *
 CODE 0000H 0003H ABSOLUTE
 CODE 0003H 001BH UNIT PROG
 CODE 001EH 000DH UNIT CONST
 CODE 002BH 001CH UNIT STRING_ROUTINES
 CODE 0047H 0008H UNIT CHAR_ROUTINES

SYMBOL TABLE OF MODULE: ASAMPLE1 (ASAMPLE)

VALUE TYPE NAME

112 Chapter 2. Application Examples

2

------- MODULE ASAMPLE
B:0029H.0 SEGMENT BITVAR
C:001EH SEGMENT CONST
D:0008H SYMBOL DUMMY
C:0003H SEGMENT PROG
C:0013H SYMBOL REPEAT
D:0098H SYMBOL SCON
D:0081H SYMBOL SP
I:006AH SEGMENT STACK
C:0003H SYMBOL START
D:008DH SYMBOL TH1
D:0089H SYMBOL TMOD
B:0088H.6 SYMBOL TR1
C:001EH SYMBOL TXT
B:0029H.0 PUBLIC TXTBIT
D:0008H SEGMENT VAR1
------- ENDMOD ASAMPLE
------- MODULE STRING_IO
N:000DH SYMBOL CR
C:0046H SYMBOL EXIT
N:000AH SYMBOL LF
C:003DH SYMBOL PS1
C:003EH SYMBOL PS2
C:0036H PUBLIC PUTSTRING
C:002BH PUBLIC PUT_CRLF
C:002BH SEGMENT STRING_ROUTINES
------- ENDMOD STRING_IO

------- MODULE CHAR_IO
C:0047H SEGMENT CHAR_ROUTINES
D:002AH SYMBOL DUMMY
C:0047H PUBLIC PUTCHAR
D:0099H SYMBOL SBUF
B:0098H.1 SYMBOL TI
D:002AH SEGMENT VAR2
------- ENDMOD CHAR_IO

INTER-MODULE CROSS-REFERENCE LISTING

NAME USAGE MODULE NAMES

PUTCHAR. . . CODE; CHAR_IO STRING_IO
PUTSTRING. . CODE; STRING_IO ASAMPLE
PUT_CRLF . . CODE; STRING_IO ASAMPLE
TXTBIT . . . BIT; ASAMPLE STRING_IO

Code Banking Examples

This section includes application examples that use code banking with the BL51
code banking linker/locator.

Example 1. Code Banking with C51

The following C51 example shows how to compile and link a program using
multiple code banks.

8051 Utilities 113

2

The program begins with function main in C_ROOT.C. The main function calls
functions in other code banks. These functions, in turn, call functions in yet
different code banks. The printf function outputs the number of the code bank
in each function.

The program can be translated using the following commands:

C51 C_ROOT.C DEBUG OBJECTEXTEND

C51 C_BANK0.C DEBUG OBJECTEXTEND

C51 C_BANK1.C DEBUG OBJECTEXTEND

C51 C_BANK2.C DEBUG OBJECTEXTEND

All program modules are translated using the C51 compiler. C_ROOT.C contains
the main function and is located in the common area. C_BANK0.C, C_BANK1.C,
and C_BANK2.C contain the bank functions and are located in the bank area. The
BL51 code banking linker/locator is invoked as follows:

BL51 COMMON{C_ROOT.OBJ}, BANK0{C_BANK0.OBJ}, &
>> BANK1{C_BANK1.OBJ}, BANK2{C_BANK2.OBJ} &
>> BANKAREA(8000H,0FFFFH)

The BANKAREA (8000H, 0FFFFH) directive defines the address space
80000H to 0FFFFH as the area for code banks. The COMMON directive places
the C_ROOT.OBJ module in the common area. The BANK0, BANK1, and
BANK2 directives place modules in bank 0, 1, and 2 respectively.

The BL51 code banking linker/locator creates a listing file, C_ROOT.M51, which
contains information about memory allocation and about the intra-bank jump
table that is generated. BL51 also creates the output module, C_ROOT, that is
stored in banked OMF format. You must use the OC51 banked object file
converter to convert the banked OMF file into standard OMF files. OMF files
can be loaded with the dScope simulator or an in-circuit emulator. Invoke the
OC51 banked object file converter as follows:

OC51 C_ROOT

For this example program, the OC51 banked object file converter produces three
standard OMF-51 files from C_ROOT. They are listed in the following table.

Filename Contents

C_ROOT.B00 All information (including symbols) for code bank 0 and the common area.

C_ROOT.B01 Information for code bank 1 and the common area.

C_ROOT.B02 Information for code bank 2 and the common area.

114 Chapter 2. Application Examples

2

You can create Intel HEX files for each of these OMF-51 files by using the
OH51 object to hex converter. The Intel HEX files you create with OH51
contain complete information for each code bank including the common area.
Intel HEX files can be generated using the following OH51 object to hex
converter command line.

OH51 C_ROOT.B00 HEXFILE (C_ROOT.H00)

OH51 C_ROOT.B01 HEXFILE (C_ROOT.H01)

OH51 C_ROOT.B02 HEXFILE (C_ROOT.H02)

Following are listings of the C source files and the linker map file.

C_ROOT.C Listing File

C51 COMPILER, C_ROOT 11/03/91 17:33:34 PAGE 1

DOS C51 COMPILER, COMPILATION OF MODULE C_ROOT
OBJECT MODULE PLACED IN C_ROOT.OBJ
COMPILER INVOKED BY: G:\C51.EXE C_ROOT.C DEBUG OBJECTEXTEND

stmt level source

 1 #include <stdio.h>
 2 #include <reg51.h>
 3
 4 extern void func0(void);
 5 extern void func1(void);
 6
 7 void main(void) {
 8 1
 9 1 /* Initialize serial interface to 2400 baud @12MHz */
 10 1 SCON = 0x52; /* SCON */
 11 1 TMOD = 0x20; /* TMOD */
 12 1 TCON = 0x69; /* TCON */
 13 1 TH1 = 0xf3; /* TH1 */
 14 1
 15 1 printf("Main program calls a function in bank 0 \n.");
 16 1 func0();
 17 1 printf("Main program calls a function in bank 1 \n.");
 18 1 func1();
 19 1
 20 1 while(1);
 21 1 }

MODULE INFORMATION: STATIC OVERLAYABLE
 CODE SIZE = 39 ----
 CONSTANT SIZE = 84 ----
 XDATA SIZE = ---- ----
 PDATA SIZE = ---- ----
 DATA SIZE = ---- ----
 IDATA SIZE = ---- ----
 BIT SIZE = ---- ----
END OF MODULE INFORMATION.

C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)

8051 Utilities 115

2

C_BANK0.C Listing File

C51 COMPILER, C_BANK0 11/03/91 17:33:35 PAGE 1

DOS C51 COMPILER, COMPILATION OF MODULE C_BANK0
OBJECT MODULE PLACED IN C_BANK0.OBJ
COMPILER INVOKED BY: G:\C51.EXE C_BANK0.C DEBUG OBJECTEXTEND

stmt level source

 1 #include <stdio.h>
 2
 3 extern void func2(void);
 4
 5 void func0(void) {
 6 1 printf("Function in bank 0 calls a function in bank 2 \n.");
 7 1 func2();
 8 1 }

MODULE INFORMATION: STATIC OVERLAYABLE
 CODE SIZE = 13 ----
 CONSTANT SIZE = 48 ----
 XDATA SIZE = ---- ----
 PDATA SIZE = ---- ----
 DATA SIZE = ---- ----
 IDATA SIZE = ---- ----
 BIT SIZE = ---- ----
END OF MODULE INFORMATION.

C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)

C_BANK1.C Listing File

C51 COMPILER, C_BANK1 11/03/91 17:33:36 PAGE 1

DOS C51 COMPILER, COMPILATION OF MODULE C_BANK1
OBJECT MODULE PLACED IN C_BANK1.OBJ
COMPILER INVOKED BY: G:\C51.EXE C_BANK1.C DEBUG OBJECTEXTEND

stmt level source

 1 #include <stdio.h>
 2
 3 extern void func2(void);
 4
 5 void func1(void) {
 6 1 printf("Function in bank 1 calls a function in bank 2 \n.");
 7 1 func2();
 8 1 }

MODULE INFORMATION: STATIC OVERLAYABLE
 CODE SIZE = 13 ----
 CONSTANT SIZE = 48 ----
 XDATA SIZE = ---- ----
 PDATA SIZE = ---- ----
 DATA SIZE = ---- ----
 IDATA SIZE = ---- ----
 BIT SIZE = ---- ----
END OF MODULE INFORMATION.

C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)

116 Chapter 2. Application Examples

2

C_BANK2.C Listing File

C51 COMPILER, C_BANK2 11/03/91 17:33:36 PAGE 1

DOS C51 COMPILER, COMPILATION OF MODULE C_BANK2
OBJECT MODULE PLACED IN C_BANK2.OBJ
COMPILER INVOKED BY: G:\C51.EXE C_BANK2.C DEBUG OBJECTEXTEND

stmt level source

 1 #include <stdio.h>
 2
 3 void func2(void) {
 4 1 printf("This is a function in bank 2! \n.");
 5 1 }

MODULE INFORMATION: STATIC OVERLAYABLE
 CODE SIZE = 10 ----
 CONSTANT SIZE = 32 ----
 XDATA SIZE = ---- ----
 PDATA SIZE = ---- ----
 DATA SIZE = ---- ----
 IDATA SIZE = ---- ----
 BIT SIZE = ---- ----
END OF MODULE INFORMATION.

C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)

C_ROOT Linker/Locator Listing File

BL51 BANKED LINKER/LOCATER 11/03/91 17:33:37 PAGE 1

MS-DOS BL51 BANKED LINKER/LOCATER, INVOKED BY:
F:\C51P\BIN\BL51.EXE COMMON {C_ROOT.OBJ}, BANK0 {C_BANK0.OBJ}, BANK1 {C_BANK1.OBJ},
>> BANK2 {C_BANK2.OBJ} BANKAREA (8000H,0FFFFH)

MEMORY MODEL: SMALL

INPUT MODULES INCLUDED:
 C_ROOT.OBJ (C_ROOT)
 C_BANK0.OBJ (C_BANK0)
 C_BANK1.OBJ (C_BANK1)
 C_BANK2.OBJ (C_BANK2)
 F:\C51P\LIB\L51_BANK.OBJ (?BANK?SWITCHING)
 F:\C51P\LIB\C51S.LIB (?C_STARTUP)
 F:\C51P\LIB\C51S.LIB (PRINTF)
 F:\C51P\LIB\C51S.LIB (?C_CLDPTR)
 F:\C51P\LIB\C51S.LIB (?C_CLDOPTR)
 F:\C51P\LIB\C51S.LIB (?C_CSTPTR)
 F:\C51P\LIB\C51S.LIB (?C_PLDIIDATA)
 F:\C51P\LIB\C51S.LIB (?C_CCASE)
 F:\C51P\LIB\C51S.LIB (PUTCHAR)

LINK MAP OF MODULE: C_ROOT (C_ROOT)

 TYPE BASE LENGTH RELOCATION SEGMENT NAME

 * * * * * * * D A T A M E M O R Y * * * * * * *
 REG 0000H 0008H ABSOLUTE "REG BANK 0"
 DATA 0008H 0014H UNIT "DATA_GROUP"
 001CH 0004H *** GAP ***
 BIT 0020H.0 0001H.1 UNIT "BIT_GROUP"
 0021H.1 0000H.7 *** GAP ***

8051 Utilities 117

2

 IDATA 0022H 0001H UNIT ?STACK

 * * * * * * * C O D E M E M O R Y * * * * * * *
 CODE 0000H 0003H ABSOLUTE
 CODE 0003H 0027H UNIT ?PR?MAIN?C_ROOT
 CODE 002AH 0054H UNIT ?CO?C_ROOT
 CODE 007EH 0030H UNIT ?CO?C_BANK0
 CODE 00AEH 0030H UNIT ?CO?C_BANK1
 CODE 00DEH 0020H UNIT ?CO?C_BANK2
 CODE 00FEH 0187H INBLOCK ?BANK?SELECT
 CODE 0285H 000CH UNIT ?C_C51STARTUP
 CODE 0291H 0027H UNIT ?PR?PUTCHAR?PUTCHAR
 02B8H 0048H *** GAP ***
 CODE 0300H 007FH PAGE ?BANK?SWITCH
 CODE 037FH 032BH UNIT ?PR?PRINTF?PRINTF
 CODE 06AAH 0094H UNIT ?C_LIB_CODE

 * * * * * * * C O D E B A N K 0 * * * * * * *
 0000H 8000H *** GAP ***
 BANK0 8000H 000DH UNIT ?PR?FUNC0?C_BANK0

 * * * * * * * C O D E B A N K 1 * * * * * * *
 0000H 8000H *** GAP ***
 BANK1 8000H 000DH UNIT ?PR?FUNC1?C_BANK1

 * * * * * * * C O D E B A N K 2 * * * * * * *
 0000H 8000H *** GAP ***
 BANK2 8000H 000AH UNIT ?PR?FUNC2?C_BANK2

OVERLAY MAP OF MODULE: C_ROOT (C_ROOT)

SEGMENT BIT-GROUP DATA-GROUP
 +--> CALLED SEGMENT START LENGTH START LENGTH
--
?C_C51STARTUP ----- ----- ----- -----
 +--> ?PR?MAIN?C_ROOT

?PR?MAIN?C_ROOT ----- ----- ----- -----
 +--> ?CO?C_ROOT
 +--> ?PR?PRINTF?PRINTF

 +--> ?PR?FUNC0?C_BANK0
 +--> ?PR?FUNC1?C_BANK1

?PR?PRINTF?PRINTF 0020H.0 0001H.1 0008H 0014H
 +--> ?C_LIB_CODE
 +--> ?PR?PUTCHAR?PUTCHAR

?PR?FUNC0?C_BANK0 ----- ----- ----- -----
 +--> ?CO?C_BANK0
 +--> ?PR?PRINTF?PRINTF
 +--> ?PR?FUNC2?C_BANK2

?PR?FUNC2?C_BANK2 ----- ----- ----- -----
 +--> ?CO?C_BANK2
 +--> ?PR?PRINTF?PRINTF

?PR?FUNC1?C_BANK1 ----- ----- ----- -----
 +--> ?CO?C_BANK1
 +--> ?PR?PRINTF?PRINTF
 +--> ?PR?FUNC2?C_BANK2

INTRABANK CALL TABLE OF MODULE: C_ROOT (C_ROOT)

ADDRESS FUNCTION NAME

 0275H FUNC0
 027AH FUNC1
 027FH FUNC2

118 Chapter 2. Application Examples

2

SYMBOL TABLE OF MODULE: C_ROOT (C_ROOT)

 VALUE TYPE NAME

 ------- MODULE C_ROOT
 C:0000H SYMBOL _ICE_DUMMY_
 C:0003H PUBLIC main
 D:0098H PUBLIC SCON
 D:0089H PUBLIC TMOD
 D:0088H PUBLIC TCON
 D:008DH PUBLIC TH1
 ------- PROC MAIN
 C:0003H LINE# 7
 C:0003H LINE# 10
 C:0006H LINE# 11
 C:0009H LINE# 12
 C:000CH LINE# 13
 C:000FH LINE# 15
 C:0018H LINE# 16
 C:001BH LINE# 17
 C:0024H LINE# 18
 C:0027H LINE# 20
 C:0029H LINE# 21
 ------- ENDPROC MAIN
 ------- ENDMOD C_ROOT

 ------- MODULE C_BANK0
 C:0000H SYMBOL _ICE_DUMMY_
 C0:8000H PUBLIC func0

 ------- PROC BANK=0 FUNC0
 C0:8000H LINE# 5
 C0:8000H LINE# 6
 C0:8009H LINE# 7
 C0:800CH LINE# 8
 ------- ENDPROC FUNC0
 ------- ENDMOD C_BANK0

 ------- MODULE C_BANK1
 C:0000H SYMBOL _ICE_DUMMY_
 C1:8000H PUBLIC func1

 ------- PROC BANK=1 FUNC1
 C1:8000H LINE# 5

 C1:8000H LINE# 6
 C1:8009H LINE# 7
 C1:800CH LINE# 8
 ------- ENDPROC FUNC1
 ------- ENDMOD C_BANK1

 ------- MODULE C_BANK2
 C:0000H SYMBOL _ICE_DUMMY_
 C2:8000H PUBLIC func2

 ------- PROC BANK=2 FUNC2
 C2:8000H LINE# 3
 C2:8000H LINE# 4
 C2:8009H LINE# 5
 ------- ENDPROC FUNC2
 ------- ENDMOD C_BANK2

 ------- MODULE ?BANK?SWITCHING
 N:0010H PUBLIC ?B_NBANKS
 N:0000H PUBLIC ?B_MODE
 D:0090H PUBLIC ?B_CURRENTBANK
 N:0078H PUBLIC ?B_MASK
 C:026EH PUBLIC _SWITCHBANK
 C:00FEH PUBLIC ?B_BANK0
 C:0115H PUBLIC ?B_BANK1
 C:012CH PUBLIC ?B_BANK2

8051 Utilities 119

2

 C:0143H PUBLIC ?B_BANK3
 C:015AH PUBLIC ?B_BANK4
 C:0171H PUBLIC ?B_BANK5
 C:0188H PUBLIC ?B_BANK6
 C:019FH PUBLIC ?B_BANK7
 C:01B6H PUBLIC ?B_BANK8
 C:01CDH PUBLIC ?B_BANK9
 C:01E4H PUBLIC ?B_BANK10
 C:01FBH PUBLIC ?B_BANK11
 C:0212H PUBLIC ?B_BANK12
 C:0229H PUBLIC ?B_BANK13
 C:0240H PUBLIC ?B_BANK14
 C:0257H PUBLIC ?B_BANK15
 ------- ENDMOD ?BANK?SWITCHING

 ------- MODULE PRINTF
 D:0008H PUBLIC ?_PRINTF517?BYTE
 D:0008H PUBLIC ?_SPRINTF517?BYTE
 D:0008H PUBLIC ?_PRINTF?BYTE
 D:0008H PUBLIC ?_SPRINTF?BYTE
 C:03E4H PUBLIC _PRINTF
 C:03DEH PUBLIC _SPRINTF
 C:03E4H PUBLIC _PRINTF517
 C:03DEH PUBLIC _SPRINTF517
 ------- ENDMOD PRINTF

 ------- MODULE ?C_CLDPTR
 C:06AAH PUBLIC ?C_CLDPTR
 ------- ENDMOD ?C_CLDPTR

 ------- MODULE ?C_CLDOPTR
 C:06C5H PUBLIC ?C_CLDOPTR
 ------- ENDMOD ?C_CLDOPTR

 ------- MODULE ?C_CSTPTR
 C:06F4H PUBLIC ?C_CSTPTR
 ------- ENDMOD ?C_CSTPTR

 ------- MODULE ?C_PLDIIDATA
 C:0708H PUBLIC ?C_PLDIIDATA
 ------- ENDMOD ?C_PLDIIDATA

 ------- MODULE ?C_CCASE
 C:0718H PUBLIC ?C_CCASE
 ------- ENDMOD ?C_CCASE

 ------- MODULE PUTCHAR
 C:0291H PUBLIC _PUTCHAR
 ------- ENDMOD PUTCHAR

LINK/LOCATE RUN COMPLETE. 0 WARNING(S), 0 ERROR(S)

Example 2. Code Banking with Constants

This example shows how to place constants in code banks. You can use this
technique to place messages or large tables in code banks other than the one in
which your program resides.

You use the BL51 code banking linker/locator to locate constant segments in
particular code banks. Segment names for constant data have the general format
?CO?modulename where modulename is the name of the source file the constant
data is declared.

120 Chapter 2. Application Examples

2

In your C51 programs, when you access constant data that is in a different
segment, you must manually ensure that the proper code bank is used when
accessing that constant data. You so this with the switchbank function. This
function is defined in the L51_BANK.A51 source module.

This example uses three source files: C_PROG.C, C_MESS0.C, and C_MESS1.C.
These source files are compiled and linked using the following commands.

C51 C_PROG.C DEBUG OBJECTEXTEND

C51 C_MESS0.C DEBUG OBJECTEXTEND

C51 C_MESS1.C DEBUG OBJECTEXTEND

BL51 C_PROG.OBJ, C_MESS0.OBJ, C_MESS1.OBJ &
>> BANKAREA(8000H,0FFFFH) &
>> BANK0(?CO?C_MESS0 (8000H)) BANK1(?CO?C_MESS1 (8000H))

OC51 C_PROG

OH51 C_PROG.B00 HEXFILE (C_PROG.H00)

OH51 C_PROG.B01 HEXFILE (C_PROG.H01)

The OMF-51 files, C_PROG.B00 and C_PROG.B01, can be loaded with the dScope
simulator or an in-circuit emulator.

The Intel HEX files, C_PROG.H00 and C_PROG.H01, can be used with an EPROM
programmer.

Following are listings of the C51 source files and the linker map file.

C_PROG.C Listing File

C51 COMPILER, C_PROG 12/03/91 10:22:36 PAGE 1

DOS C51 COMPILER, COMPILATION OF MODULE C_PROG
OBJECT MODULE PLACED IN C_PROG.OBJ
COMPILER INVOKED BY: G:\C51.EXE C_PROG.C DEBUG OBJECTEXTEND

stmt level source

 1 #include <stdio.h>
 2 #include <reg51.h>
 3
 4 extern char *message0[];
 5 extern char *message1[];
 6 extern switchbank (unsigned char);
 7
 8 void main(void) {
 9 1
 10 1 /* Initialise serial interface to 2400 baud @12MHz */
 11 1 SCON = 0x52; /* SCON */
 12 1 TMOD = 0x20; /* TMOD */
 13 1 TCON = 0x69; /* TCON */

8051 Utilities 121

2

 14 1 TH1 = 0xf3; /* TH1 */
 15 1
 16 1 switchbank(0); /* Switch to code bank 0 */
 17 1 printf(message0[0]);
 18 1 switchbank(1); /* Switch to code bank 1 */
 19 1 printf(message1[0]);
 20 1
 21 1 while(1);
 22 1 }

C_MESS0.C Listing File

C51 COMPILER, C_MESS0 12/03/91 10:28:22 PAGE 1

DOS C51 COMPILER, COMPILATION OF MODULE C_MESS0
OBJECT MODULE PLACED IN C_MESS0.OBJ
COMPILER INVOKED BY: G:\C51.EXE C_MESS0.C DEBUG OBJECTEXTEND

stmt level source

 1 code char *message0[] = {
 2 "This is a message from code bank 0\n.",
 3 "This is another text."
 4 };

C_MESS1.C Listing File

C51 COMPILER, C_MESS1 12/03/91 10:28:22 PAGE 1

DOS C51 COMPILER, COMPILATION OF MODULE C_MESS1
OBJECT MODULE PLACED IN C_MESS1.OBJ
COMPILER INVOKED BY: G:\C51.EXE C_MESS1.C DEBUG OBJECTEXTEND

stmt level source

 1 code char *message1[] = {
 2 "This is a message from code bank 1\n.",
 3 "This is another text."
 4 };

C_PROG Linker/Locator Listing File

BL51 BANKED LINKER/LOCATER 13/03/91 09:10:54 PAGE 1

MS-DOS BL51 BANKED LINKER/LOCATER, INVOKED BY:
F:\C51P\BIN\BL51.EXE C_PROG.OBJ, C_MESS0.OBJ, C_MESS1.OBJ BANKAREA (8000H, 0FFFFH)
BANK0 (?CO?C_MESS0 (8000H)) BANK1 (?C
>> O?C_MESS1 (8000H))

MEMORY MODEL: SMALL

INPUT MODULES INCLUDED:
 C_PROG.OBJ (C_PROG)
 C_MESS0.OBJ (C_MESS0)
 C_MESS1.OBJ (C_MESS1)
 F:\C51P\LIB\L51_BANK.OBJ (?BANK?SWITCHING)
 F:\C51P\LIB\C51S.LIB (?C_STARTUP)
 F:\C51P\LIB\C51S.LIB (PRINTF)

122 Chapter 2. Application Examples

2

 F:\C51P\LIB\C51S.LIB (?C_CLDPTR)
 F:\C51P\LIB\C51S.LIB (?C_CLDOPTR)
 F:\C51P\LIB\C51S.LIB (?C_CSTPTR)
 F:\C51P\LIB\C51S.LIB (?C_PLDIIDATA)
 F:\C51P\LIB\C51S.LIB (?C_CCASE)
 F:\C51P\LIB\C51S.LIB (PUTCHAR)

LINK MAP OF MODULE: C_PROG (C_PROG)

 TYPE BASE LENGTH RELOCATION SEGMENT NAME

 * * * * * * * D A T A M E M O R Y * * * * * * *
 REG 0000H 0008H ABSOLUTE "REG BANK 0"
 DATA 0008H 0014H UNIT "DATA_GROUP"
 001CH 0004H *** GAP ***
 BIT 0020H.0 0001H.1 UNIT "BIT_GROUP"
 0021H.1 0000H.7 *** GAP ***
 IDATA 0022H 0001H UNIT ?STACK

 * * * * * * * C O D E M E M O R Y * * * * * * *
 CODE 0000H 0003H ABSOLUTE
 CODE 0003H 003BH UNIT ?PR?MAIN?C_PROG
 CODE 003EH 0178H INBLOCK ?BANK?SELECT
 CODE 01B6H 000CH UNIT ?C_C51STARTUP
 CODE 01C2H 0027H UNIT ?PR?PUTCHAR?PUTCHAR
 01E9H 0017H *** GAP ***
 CODE 0200H 007FH PAGE ?BANK?SWITCH
 CODE 027FH 032BH UNIT ?PR?PRINTF?PRINTF
 CODE 05AAH 0094H UNIT ?C_LIB_CODE

 * * * * * * * C O D E B A N K 0 * * * * * * *
 0000H 8000H *** GAP ***
 BANK0 8000H 003FH UNIT ?CO?C_MESS0

 * * * * * * * C O D E B A N K 1 * * * * * * *
 0000H 8000H *** GAP ***
 BANK1 8000H 003FH UNIT ?CO?C_MESS1

OVERLAY MAP OF MODULE: C_PROG (C_PROG)

SEGMENT BIT-GROUP DATA-GROUP
 +--> CALLED SEGMENT START LENGTH START LENGTH
--
?C_C51STARTUP ----- ----- ----- -----
 +--> ?PR?MAIN?C_PROG

?PR?MAIN?C_PROG ----- ----- ----- -----
 +--> ?CO?C_MESS0
 +--> ?PR?PRINTF?PRINTF
 +--> ?CO?C_MESS1

?PR?PRINTF?PRINTF 0020H.0 0001H.1 0008H 0014H
 +--> ?C_LIB_CODE
 +--> ?PR?PUTCHAR?PUTCHAR

SYMBOL TABLE OF MODULE: C_PROG (C_PROG)

 VALUE TYPE NAME

 ------- MODULE C_PROG
 C:0000H SYMBOL _ICE_DUMMY_
 C:0003H PUBLIC main
 D:0098H PUBLIC SCON
 D:0089H PUBLIC TMOD
 D:0088H PUBLIC TCON
 D:008DH PUBLIC TH1
 ------- PROC MAIN
 C:0003H LINE# 8
 C:0003H LINE# 11

8051 Utilities 123

2

 C:0006H LINE# 12
 C:0009H LINE# 13
 C:000CH LINE# 14
 C:000FH LINE# 16
 C:0014H LINE# 17
 C:0025H LINE# 18
 C:002AH LINE# 19
 C:003BH LINE# 21
 C:003DH LINE# 22
 ------- ENDPROC MAIN
 ------- ENDMOD C_PROG

 ------- MODULE C_MESS0
 C:0000H SYMBOL _ICE_DUMMY_
 C0:8039H PUBLIC message0
 ------- ENDMOD C_MESS0

 ------- MODULE C_MESS1
 C:0000H SYMBOL _ICE_DUMMY_
 C1:8039H PUBLIC message1
 ------- ENDMOD C_MESS1

 ------- MODULE ?BANK?SWITCHING
 N:0010H PUBLIC ?B_NBANKS
 N:0000H PUBLIC ?B_MODE
 D:0090H PUBLIC ?B_CURRENTBANK
 N:0078H PUBLIC ?B_MASK
 C:01AEH PUBLIC _SWITCHBANK
 C:003EH PUBLIC ?B_BANK0
 C:0055H PUBLIC ?B_BANK1
 C:006CH PUBLIC ?B_BANK2
 C:0083H PUBLIC ?B_BANK3
 C:009AH PUBLIC ?B_BANK4
 C:00B1H PUBLIC ?B_BANK5
 C:00C8H PUBLIC ?B_BANK6
 C:00DFH PUBLIC ?B_BANK7
 C:00F6H PUBLIC ?B_BANK8
 C:010DH PUBLIC ?B_BANK9
 C:0124H PUBLIC ?B_BANK10
 C:013BH PUBLIC ?B_BANK11
 C:0152H PUBLIC ?B_BANK12
 C:0169H PUBLIC ?B_BANK13
 C:0180H PUBLIC ?B_BANK14
 C:0197H PUBLIC ?B_BANK15
 ------- ENDMOD ?BANK?SWITCHING

 ------- MODULE PRINTF
 D:0008H PUBLIC ?_PRINTF517?BYTE
 D:0008H PUBLIC ?_SPRINTF517?BYTE
 D:0008H PUBLIC ?_PRINTF?BYTE
 D:0008H PUBLIC ?_SPRINTF?BYTE
 C:02E4H PUBLIC _PRINTF
 C:02DEH PUBLIC _SPRINTF
 C:02E4H PUBLIC _PRINTF517
 C:02DEH PUBLIC _SPRINTF517
 ------- ENDMOD PRINTF

 ------- MODULE ?C_CLDPTR
 C:05AAH PUBLIC ?C_CLDPTR
 ------- ENDMOD ?C_CLDPTR

 ------- MODULE ?C_CLDOPTR
 C:05C5H PUBLIC ?C_CLDOPTR
 ------- ENDMOD ?C_CLDOPTR

 ------- MODULE ?C_CSTPTR
 C:05F4H PUBLIC ?C_CSTPTR
 ------- ENDMOD ?C_CSTPTR

 ------- MODULE ?C_PLDIIDATA
 C:0608H PUBLIC ?C_PLDIIDATA
 ------- ENDMOD ?C_PLDIIDATA

124 Chapter 2. Application Examples

2

 ------- MODULE ?C_CCASE
 C:0618H PUBLIC ?C_CCASE
 ------- ENDMOD ?C_CCASE

 ------- MODULE PUTCHAR
 C:01C2H PUBLIC _PUTCHAR
 ------- ENDMOD PUTCHAR

LINK/LOCATE RUN COMPLETE. 0 WARNING(S), 0 ERROR(S)

Example 3. Placing Specific Functions in Code
Banks

This example shows how you can locate a single function in a specific code
bank. To do this, you use directives on the command line for the BL51 code
banking linker/locator.

This example locates an interrupt function, timer0, in the common area. The
segment name for this function is ?PR?TIMER0?C_MODUL. This example
also locates an initialization function, tinit, in code bank 1. The segment name
for this function is ?PR?TINIT?C_MODUL.

Both functions are contained in C_MODUL.C. The following commands were
used to compile and link this example.

C51 C_MODUL.C DEBUG OBJECTEXTEND

BL51 BANK0{C_MODUL.OBJ} BANKAREA(8000H,0FFFFH) &
>> COMMON (?PR?TIMER0?C_MODUL) &
>> BANK1(?PR?TINIT?C_MODUL (8000H))

 OC51 C_MODUL

 OH51 C_MODUL.B00 HEXFILE (C_MODUL.H00)

 OH51 C_MODUL.B01 HEXFILE (C_MODUL.H01)

The OMF-51 files, C_MODUL.B00 and C_MODUL.B01, can be loaded with the
dScope simulator or an in-circuit emulator.

The Intel HEX files, C_MODUL.H00 and C_MODUL.H01, can be used with an
EPROM programmer.

Following are listings of the C51 source file, C_MODUL.C, and the linker map
file.

8051 Utilities 125

2

C_MODUL.C Listing File

C51 COMPILER, C_MODUL 11/03/91 17:33:52 PAGE 1

DOS C51 COMPILER, COMPILATION OF MODULE C_MODUL
OBJECT MODULE PLACED IN C_MODUL.OBJ
COMPILER INVOKED BY: G:\C51.EXE C_MODUL.C DEBUG OBJECTEXTEND

stmt level source

 1 #include <stdio.h>
 2 #include <reg51.h>
 3
 4 unsigned long msec; /* Millisecond counter */
 5 unsigned char intcycle; /* Interrupt cycle counter */
 6
 7 /**/
 8 /* Timer 0 interrupt service function */
 9 /* executes each 250us @ 12 MHz crystal clock */
 10 /**/
 11 timer0() interrupt 1 using 1 /* int vector at 000BH, reg. bank 1*/
 12 {
 13 1 if (++intcycle == 4) { /* 1 msec = 4* 250 usec cycle */
 14 2 intcycle = 0;
 15 2 msec++;
 16 2 }
 17 1 }
 18
 19
 20 /***************************/
 21 /* setup timer 0 interrupt */
 22 /***************************/
 23 tinit () {
 24 1 TH0 = -250; /* Set timer period */
 25 1 TL0 = -250;
 26 1 TMOD = TMOD | 0x02; /* Select mode 2 */
 27 1 TR0 = 1; /* Start timer 0 */
 28 1 ET0 = 1; /* Enable timer 0 interrupt*/
 29 1 EA = 1; /* Global interrupt enable */
 30 1 }
 31
 32 void main(void) {
 33 1 /* INITIALIZE SERIAL INTERFACE TO 2400 BAUD @12MHz */
 34 1 SCON = 0x52; /* SCON */
 35 1 TMOD = 0x20; /* TMOD */
 36 1 TCON = 0x69; /* TCON */
 37 1 TH1 = 0xf3; /* TH1 */
 38 1
 39 1 tinit (); /* Initialize timer 0 */
 40 1 while(1) {
 41 2 printf ("MSEC=%lu\r", msec);
 42 2 }
 43 1 }

C_MODUL Linker/Locator Listing File

BL51 BANKED LINKER/LOCATER 13/03/91 09:11:19 PAGE 1

MS-DOS BL51 BANKED LINKER/LOCATER, INVOKED BY:
F:\C51P\BIN\BL51.EXE BANK0 {C_MODUL.OBJ} COMMON (?PR?TIMER0?C_MODUL) BANK1
(?PR?TINIT?C_MODUL
>> (8000H)) BANKAREA (8000H, 0FFFFH)

MEMORY MODEL: SMALL

INPUT MODULES INCLUDED:

126 Chapter 2. Application Examples

2

 C_MODUL.OBJ (C_MODUL)
 F:\C51P\LIB\L51_BANK.OBJ (?BANK?SWITCHING)
 F:\C51P\LIB\C51S.LIB (?C_STARTUP)
 F:\C51P\LIB\C51S.LIB (?C_LADD)
 F:\C51P\LIB\C51S.LIB (?C_ISTACK)
 F:\C51P\LIB\C51S.LIB (PRINTF)
 F:\C51P\LIB\C51S.LIB (?C_CLDPTR)
 F:\C51P\LIB\C51S.LIB (?C_CLDOPTR)
 F:\C51P\LIB\C51S.LIB (?C_CSTPTR)
 F:\C51P\LIB\C51S.LIB (?C_LACC)
 F:\C51P\LIB\C51S.LIB (?C_PLDIIDATA)
 F:\C51P\LIB\C51S.LIB (?C_CCASE)
 F:\C51P\LIB\C51S.LIB (PUTCHAR)

LINK MAP OF MODULE: C_MODUL (C_MODUL)

 TYPE BASE LENGTH RELOCATION SEGMENT NAME

 * * * * * * * D A T A M E M O R Y * * * * * * *
 REG 0000H 0008H ABSOLUTE "REG BANK 0"
 REG 0008H 0008H ABSOLUTE "REG BANK 1"
 DATA 0010H 0005H UNIT ?DT?C_MODUL
 DATA 0015H 0005H UNIT ?C_LIB_DATA
 001AH 0006H *** GAP ***
 BIT 0020H.0 0001H.1 UNIT "BIT_GROUP"
 0021H.1 0000H.7 *** GAP ***
 DATA 0022H 0014H UNIT "DATA_GROUP"
 IDATA 0036H 0001H UNIT ?STACK

 * * * * * * * C O D E M E M O R Y * * * * * * *
 CODE 0000H 0003H ABSOLUTE
 0003H 0008H *** GAP ***
 CODE 000BH 0003H ABSOLUTE
 CODE 000EH 0040H UNIT ?PR?TIMER0?C_MODUL
 CODE 004EH 000AH UNIT ?CO?C_MODUL
 CODE 0058H 0182H INBLOCK ?BANK?SELECT
 CODE 01DAH 000CH UNIT ?C_C51STARTUP
 01E6H 001AH *** GAP ***
 CODE 0200H 007FH PAGE ?BANK?SWITCH
 CODE 027FH 00E6H UNIT ?C_LIB_CODE
 CODE 0365H 032BH UNIT ?PR?PRINTF?PRINTF
 CODE 0690H 0027H UNIT ?PR?PUTCHAR?PUTCHAR

 * * * * * * * C O D E B A N K 0 * * * * * * *
 0000H 8000H *** GAP ***
 BANK0 8000H 0027H UNIT ?PR?MAIN?C_MODUL

 * * * * * * * C O D E B A N K 1 * * * * * * *
 0000H 8000H *** GAP ***
 BANK1 8000H 0010H UNIT ?PR?TINIT?C_MODUL

OVERLAY MAP OF MODULE: C_MODUL (C_MODUL)

SEGMENT BIT-GROUP DATA-GROUP
 +--> CALLED SEGMENT START LENGTH START LENGTH
--
?PR?TIMER0?C_MODUL ----- ----- ----- -----
 +--> ?C_LIB_CODE

?C_C51STARTUP ----- ----- ----- -----
 +--> ?PR?MAIN?C_MODUL

?PR?MAIN?C_MODUL ----- ----- ----- -----
 +--> ?PR?TINIT?C_MODUL
 +--> ?CO?C_MODUL
 +--> ?PR?PRINTF?PRINTF

?PR?PRINTF?PRINTF 0020H.0 0001H.1 0022H 0014H

8051 Utilities 127

2

 +--> ?C_LIB_CODE
 +--> ?PR?PUTCHAR?PUTCHAR

INTRABANK CALL TABLE OF MODULE: C_MODUL (C_MODUL)

ADDRESS FUNCTION NAME

 01CFH TINIT
 01D4H ?C_START (= MAIN)

SYMBOL TABLE OF MODULE: C_MODUL (C_MODUL)

 VALUE TYPE NAME

 ------- MODULE C_MODUL
 C:0000H SYMBOL _ICE_DUMMY_
 B:00A8H.7 PUBLIC EA
 C0:8000H PUBLIC main
 D:0010H PUBLIC msec
 C1:8000H PUBLIC tinit
 D:0098H PUBLIC SCON
 D:0089H PUBLIC TMOD
 D:0088H PUBLIC TCON
 B:00A8H.1 PUBLIC ET0
 D:008CH PUBLIC TH0
 D:008DH PUBLIC TH1
 D:008AH PUBLIC TL0
 C:000EH PUBLIC timer0
 B:0088H.4 PUBLIC TR0
 D:0014H PUBLIC intcycle
 ------- PROC TIMER0
 C:000EH LINE# 11
 C:001BH LINE# 13
 C:0022H LINE# 14
 C:0025H LINE# 15
 C:0043H LINE# 16
 C:0043H LINE# 17
 ------- ENDPROC TIMER0

 ------- PROC BANK=1 TINIT
 C1:8000H LINE# 23
 C1:8000H LINE# 24
 C1:8003H LINE# 25
 C1:8006H LINE# 26
 C1:8009H LINE# 27
 C1:800BH LINE# 28
 C1:800DH LINE# 29
 C1:800FH LINE# 30
 ------- ENDPROC TINIT

 ------- PROC BANK=0 MAIN
 C0:8000H LINE# 32
 C0:8000H LINE# 34
 C0:8003H LINE# 35
 C0:8006H LINE# 36
 C0:8009H LINE# 37
 C0:800CH LINE# 39
 C0:800FH LINE# 40
 C0:800FH LINE# 41
 C0:8024H LINE# 42
 C0:8026H LINE# 43
 ------- ENDPROC MAIN
 ------- ENDMOD C_MODUL

 ------- MODULE ?BANK?SWITCHING
 N:0010H PUBLIC ?B_NBANKS
 N:0000H PUBLIC ?B_MODE
 D:0090H PUBLIC ?B_CURRENTBANK
 N:0078H PUBLIC ?B_MASK

128 Chapter 2. Application Examples

2

 C:01C8H PUBLIC _SWITCHBANK
 C:0058H PUBLIC ?B_BANK0
 C:006FH PUBLIC ?B_BANK1
 C:0086H PUBLIC ?B_BANK2
 C:009DH PUBLIC ?B_BANK3
 C:00B4H PUBLIC ?B_BANK4
 C:00CBH PUBLIC ?B_BANK5
 C:00E2H PUBLIC ?B_BANK6
 C:00F9H PUBLIC ?B_BANK7
 C:0110H PUBLIC ?B_BANK8
 C:0127H PUBLIC ?B_BANK9
 C:013EH PUBLIC ?B_BANK10
 C:0155H PUBLIC ?B_BANK11
 C:016CH PUBLIC ?B_BANK12
 C:0183H PUBLIC ?B_BANK13
 C:019AH PUBLIC ?B_BANK14
 C:01B1H PUBLIC ?B_BANK15
 ------- ENDMOD ?BANK?SWITCHING

 ------- MODULE ?C_LADD
 C:027FH PUBLIC ?C_LADD
 ------- ENDMOD ?C_LADD

 ------- MODULE ?C_ISTACK
 D:0015H PUBLIC ?C_DSTKLEVEL
 C:0292H PUBLIC ?C_LPUSH
 C:02B1H PUBLIC ?C_LPULL
 C:02B9H PUBLIC ?C_LSTKDEC
 ------- ENDMOD ?C_ISTACK

 ------- MODULE PRINTF
 D:0022H PUBLIC ?_PRINTF517?BYTE
 D:0022H PUBLIC ?_SPRINTF517?BYTE
 D:0022H PUBLIC ?_PRINTF?BYTE
 D:0022H PUBLIC ?_SPRINTF?BYTE
 C:03CAH PUBLIC _PRINTF
 C:03C4H PUBLIC _SPRINTF
 C:03CAH PUBLIC _PRINTF517
 C:03C4H PUBLIC _SPRINTF517
 ------- ENDMOD PRINTF

 ------- MODULE ?C_CLDPTR
 C:02D1H PUBLIC ?C_CLDPTR
 ------- ENDMOD ?C_CLDPTR

 ------- MODULE ?C_CLDOPTR
 C:02ECH PUBLIC ?C_CLDOPTR
 ------- ENDMOD ?C_CLDOPTR

 ------- MODULE ?C_CSTPTR
 C:031BH PUBLIC ?C_CSTPTR
 ------- ENDMOD ?C_CSTPTR

 ------- MODULE ?C_PLDIIDATA
 C:032FH PUBLIC ?C_PLDIIDATA
 ------- ENDMOD ?C_PLDIIDATA

 ------- MODULE ?C_CCASE
 C:033FH PUBLIC ?C_CCASE
 ------- ENDMOD ?C_CCASE

 ------- MODULE PUTCHAR
 C:0690H PUBLIC _PUTCHAR
 ------- ENDMOD PUTCHAR

LINK/LOCATE RUN COMPLETE. 0 WARNING(S), 0 ERROR(S)

8051 Utilities 129

2

Example 4. Code Banking with PL/M-51

The following PL/M-51 examples shows how to compile and link a PL/M-51
program using multiple code banks. The function of this example is similar to
that shown in “Example 1. Code Banking with C51” on page 112.

The program begins with the procedure in P_ROOT.P51. This routine calls
routines in other code banks which, in turn, call routines in yet different code
banks.

The PL/M-51 programs are compiled using the following commands.

PLM51 P_ROOT.P51 DEBUG

PLM51 P_BANK0.P51 DEBUG

PLM51 P_BANK1.P51 DEBUG

PLM51 P_BANK2.P51 DEBUG

In this example, P_ROOT.OBJ is located in the common area and P_BANK0.OBJ,
P_BANK1.OBJ, and P_BANK2.OBJ are located in the bank area.

NOTE
The PL/M-51 runtime library, PLM51.LIB, must be included in the linkage. You
must either specify a path to the directory in which this library is stored, or you
must include it directly in the linker command line.

The BL51 code banking linker/locator is invoked as follows:

BL51 COMMON{P_ROOT.OBJ}, BANK0{P_BANK0.OBJ}, &
>> BANK1{P_BANK1.OBJ}, BANK2{P_BANK2.OBJ} &
>> BANKAREA(8000H,0FFFFH)

The BANKAREA (8000H, 0FFFFH) directive defines the address space
80000H to 0FFFFH as the area for code banks. The COMMON directive places
the P_ROOT.OBJ module in the common area. The BANK0, BANK1, and
BANK2 directives place modules in bank 0, 1, and 2 respectively.

130 Chapter 2. Application Examples

2

The BL51 code banking linker/locator creates a listing file, P_ROOT.M51, which
contains information about memory allocation and about the intra-bank jump
table that is generated. BL51 also creates the output module, P_ROOT, that is
stored in banked OMF format. You must use the OC51 banked object file
converter to convert the banked OMF file into standard OMF files. OMF files
can be loaded with the dScope simulator or an in-circuit emulator. Invoke the
OC51 banked object file converter as follows:

OC51 P_ROOT

For this example program, the OC51 banked object file converter produces three
standard OMF-51 files from P_ROOT. They are listed in the following table.

Filename Contents

P_ROOT.B00 All information (including symbols) for code bank 0 and the common area.

P_ROOT.B01 Information for code bank 1 and the common area.

P_ROOT.B02 Information for code bank 2 and the common area.

You can create Intel HEX files for each of these OMF-51 files by using the
OH51 object to hex converter. The Intel HEX files you create with OH51
contain complete information for each code bank including the common area.
Intel HEX files can be generated using the following OH51 object to hex
converter command line.

OH51 P_ROOT.B00 HEXFILE (P_ROOT.H00)

OH51 P_ROOT.B01 HEXFILE (P_ROOT.H01)

OH51 P_ROOT.B02 HEXFILE (P_ROOT.H02)

Following are listings of the PL/M-51 source files and the linker map file.

P_ROOT.P51 Listing File

PL/M-51 COMPILER 03/11/91 PAGE 1

DOS 4.0 (038-N) PL/M-51
COMPILER INVOKED BY: F:\C51P\BIN\PLM51.EXE P_ROOT.P51 DEBUG

 1 1 P_ROOT: DO;

 2 2 FUNC0: PROCEDURE EXTERNAL; END;
 4 2 FUNC1: PROCEDURE EXTERNAL; END;

 /* Start of main program */

 /* Main program calls a function in bank 0 */
 6 1 CALL FUNC0;

8051 Utilities 131

2

 /* Main program calls a function in bank 1 */
 7 1 CALL FUNC1;

 8 2 DO WHILE (1); END;

 10 1 END;

MODULE INFORMATION: (STATIC+OVERLAYABLE)
 CODE SIZE = 0008H 8D
 CONSTANT SIZE = 0000H 0D
 DIRECT VARIABLE SIZE = 00H+00H 0D+ 0D
 INDIRECT VARIABLE SIZE = 00H+00H 0D+ 0D
 BIT SIZE = 00H+00H 0D+ 0D
 BIT-ADDRESSABLE SIZE = 00H+00H 0D+ 0D
 AUXILIARY VARIABLE SIZE = 0000H 0D
 MAXIMUM STACK SIZE = 0004H 4D
 REGISTER-BANK(S) USED: 0
 17 LINES READ
 0 PROGRAM ERROR(S)
END OF PL/M-51 COMPILATION

P_BANK0.P51 Listing File

PL/M-51 COMPILER 03/11/91 PAGE 1

DOS 4.0 (038-N) PL/M-51
COMPILER INVOKED BY: F:\C51P\BIN\PLM51.EXE P_BANK0.P51 DEBUG

 1 1 P_BANK0: DO;

 2 2 FUNC2: PROCEDURE EXTERNAL; END;

 4 2 FUNC0: PROCEDURE PUBLIC;
 /* Function in bank 0 calls a function in bank 2 */
 5 2 CALL FUNC2;
 6 2 END;

 7 1 END;

MODULE INFORMATION: (STATIC+OVERLAYABLE)
 CODE SIZE = 0004H 4D
 CONSTANT SIZE = 0000H 0D
 DIRECT VARIABLE SIZE = 00H+00H 0D+ 0D
 INDIRECT VARIABLE SIZE = 00H+00H 0D+ 0D
 BIT SIZE = 00H+00H 0D+ 0D
 BIT-ADDRESSABLE SIZE = 00H+00H 0D+ 0D
 AUXILIARY VARIABLE SIZE = 0000H 0D
 MAXIMUM STACK SIZE = 0002H 2D
 REGISTER-BANK(S) USED: 0
 11 LINES READ
 0 PROGRAM ERROR(S)
END OF PL/M-51 COMPILATION

P_BANK1.P51 Listing File

PL/M-51 COMPILER 03/11/91 PAGE 1

DOS 4.0 (038-N) PL/M-51
COMPILER INVOKED BY: F:\C51P\BIN\PLM51.EXE P_BANK1.P51 DEBUG

132 Chapter 2. Application Examples

2

 1 1 P_BANK1: DO;

 2 2 FUNC2: PROCEDURE EXTERNAL; END;

 4 2 FUNC1: PROCEDURE PUBLIC;
 /* Function in bank 1 calls a function in bank 2 */
 5 2 CALL FUNC2;
 6 2 END;

 7 1 END;

MODULE INFORMATION: (STATIC+OVERLAYABLE)
 CODE SIZE = 0004H 4D
 CONSTANT SIZE = 0000H 0D
 DIRECT VARIABLE SIZE = 00H+00H 0D+ 0D
 INDIRECT VARIABLE SIZE = 00H+00H 0D+ 0D
 BIT SIZE = 00H+00H 0D+ 0D
 BIT-ADDRESSABLE SIZE = 00H+00H 0D+ 0D
 AUXILIARY VARIABLE SIZE = 0000H 0D
 MAXIMUM STACK SIZE = 0002H 2D
 REGISTER-BANK(S) USED: 0
 11 LINES READ
 0 PROGRAM ERROR(S)
END OF PL/M-51 COMPILATION

P_BANK2.P51 Listing File

PL/M-51 COMPILER 03/11/91 PAGE 1

DOS 4.0 (038-N) PL/M-51
COMPILER INVOKED BY: F:\C51P\BIN\PLM51.EXE P_BANK2.P51 DEBUG

 1 1 P_BANK2: DO;

 2 2 FUNC2: PROCEDURE PUBLIC;
 /* This is a function in bank 2. */
 3 2 END;

 4 1 END;

MODULE INFORMATION: (STATIC+OVERLAYABLE)
 CODE SIZE = 0001H 1D
 CONSTANT SIZE = 0000H 0D
 DIRECT VARIABLE SIZE = 00H+00H 0D+ 0D
 INDIRECT VARIABLE SIZE = 00H+00H 0D+ 0D
 BIT SIZE = 00H+00H 0D+ 0D
 BIT-ADDRESSABLE SIZE = 00H+00H 0D+ 0D
 AUXILIARY VARIABLE SIZE = 0000H 0D
 MAXIMUM STACK SIZE = 0002H 2D
 REGISTER-BANK(S) USED: 0
 7 LINES READ
 0 PROGRAM ERROR(S)
END OF PL/M-51 COMPILATION

P_ROOT Linker/Locator Listing File

BL51 BANKED LINKER/LOCATER 11/03/91 17:34:03 PAGE 1

MS-DOS BL51 BANKED LINKER/LOCATER, INVOKED BY:
F:\C51P\BIN\BL51.EXE COMMON {P_ROOT.OBJ}, BANK0 {P_BANK0.OBJ}, BANK1 {P_BANK1.OBJ},
BANK2
>> {P_BANK2.OBJ} BANKAREA (8000H,0FFFFH)

8051 Utilities 133

2

MEMORY MODEL: SMALL (PL/M-51)

INPUT MODULES INCLUDED:
 P_ROOT.OBJ (P_ROOT)
 P_BANK0.OBJ (P_BANK0)
 P_BANK1.OBJ (P_BANK1)
 P_BANK2.OBJ (P_BANK2)
 F:\C51P\LIB\L51_BANK.OBJ (?BANK?SWITCHING)
 F:\C51P\LIB\PLM51.LIB (?PIV0R)

LINK MAP OF MODULE: P_ROOT (P_ROOT)

 TYPE BASE LENGTH RELOCATION SEGMENT NAME

 * * * * * * * D A T A M E M O R Y * * * * * * *
 REG 0000H 0008H ABSOLUTE "REG BANK 0"
 IDATA 0008H 0001H UNIT ?STACK

 * * * * * * * C O D E M E M O R Y * * * * * * *
 CODE 0000H 0003H ABSOLUTE
 CODE 0003H 0008H INBLOCK ?P_ROOT?PR
 CODE 000BH 0187H INBLOCK ?BANK?SELECT
 CODE 0192H 0009H UNIT ?PIV0RS
 019BH 0065H *** GAP ***
 CODE 0200H 007FH PAGE ?BANK?SWITCH

 * * * * * * * C O D E B A N K 0 * * * * * * *
 0000H 8000H *** GAP ***
 BANK0 8000H 0004H INBLOCK ?P_BANK0?PR

 * * * * * * * C O D E B A N K 1 * * * * * * *
 0000H 8000H *** GAP ***
 BANK1 8000H 0004H INBLOCK ?P_BANK1?PR

 * * * * * * * C O D E B A N K 2 * * * * * * *
 0000H 8000H *** GAP ***
 BANK2 8000H 0001H INBLOCK ?P_BANK2?PR

OVERLAY MAP OF MODULE: P_ROOT (P_ROOT)

SEGMENT
 +--> CALLED SEGMENT

?PIV0RS
 +--> ?P_ROOT?PR

?P_ROOT?PR
 +--> ?P_BANK0?PR
 +--> ?P_BANK1?PR

?P_BANK0?PR
 +--> ?P_BANK2?PR

?P_BANK1?PR
 +--> ?P_BANK2?PR

INTRABANK CALL TABLE OF MODULE: P_ROOT (P_ROOT)

ADDRESS FUNCTION NAME

 0182H FUNC0
 0187H FUNC1
 018CH FUNC2

SYMBOL TABLE OF MODULE: P_ROOT (P_ROOT)

134 Chapter 2. Application Examples

2

 VALUE TYPE NAME

 ------- MODULE P_ROOT
 C:0003H SYMBOL P_ROOT
 C:0003H LINE# 6
 C:0006H LINE# 7
 C:0009H LINE# 8
 C:0009H LINE# 9
 C:000BH LINE# 10
 ------- ENDMOD P_ROOT

 ------- MODULE P_BANK0
 C:8000H PUBLIC FUNC0
 C:8004H SYMBOL P_BANK0

 ------- PROC BANK=0 FUNC0
 ------- ENDPROC FUNC0
 C0:8000H LINE# 4
 C0:8000H LINE# 5
 C0:8003H LINE# 6
 C0:8004H LINE# 7
 ------- ENDMOD P_BANK0

 ------- MODULE P_BANK1
 C:8000H PUBLIC FUNC1
 C:8004H SYMBOL P_BANK1

 ------- PROC BANK=1 FUNC1
 ------- ENDPROC FUNC1
 C1:8000H LINE# 4
 C1:8000H LINE# 5
 C1:8003H LINE# 6
 C1:8004H LINE# 7
 ------- ENDMOD P_BANK1

 ------- MODULE P_BANK2
 C:8000H PUBLIC FUNC2
 C:8001H SYMBOL P_BANK2

 ------- PROC BANK=2 FUNC2
 ------- ENDPROC FUNC2
 C2:8001H LINE# 1
 C2:8000H LINE# 2
 C2:8000H LINE# 3
 C2:8001H LINE# 4
 ------- ENDMOD P_BANK2

 ------- MODULE ?BANK?SWITCHING
 N:0010H PUBLIC ?B_NBANKS
 N:0000H PUBLIC ?B_MODE
 D:0090H PUBLIC ?B_CURRENTBANK
 N:0078H PUBLIC ?B_MASK
 C:017BH PUBLIC _SWITCHBANK
 C:000BH PUBLIC ?B_BANK0
 C:0022H PUBLIC ?B_BANK1
 C:0039H PUBLIC ?B_BANK2
 C:0050H PUBLIC ?B_BANK3
 C:0067H PUBLIC ?B_BANK4
 C:007EH PUBLIC ?B_BANK5
 C:0095H PUBLIC ?B_BANK6
 C:00ACH PUBLIC ?B_BANK7
 C:00C3H PUBLIC ?B_BANK8
 C:00DAH PUBLIC ?B_BANK9
 C:00F1H PUBLIC ?B_BANK10
 C:0108H PUBLIC ?B_BANK11
 C:011FH PUBLIC ?B_BANK12
 C:0136H PUBLIC ?B_BANK13
 C:014DH PUBLIC ?B_BANK14
 C:0164H PUBLIC ?B_BANK15
 ------- ENDMOD ?BANK?SWITCHING

8051 Utilities 135

2

LINK/LOCATE RUN COMPLETE. 0 WARNING(S), 0 ERROR(S)

136 Chapter 2. Application Examples

2

8051 Utilities 137

3

Chapter 3. LIB51 Library Manager
The LIB51 library manager allows you to create and maintain library files. A
library file is a formatted collection of one or more object files. Library files
provide a convenient method of referencing a large number of object files and
can be used by the L51 linker/locator.

The LIB51 library manager allows you to create library files, add object
modules, remove object modules, and list library file contents. The LIB51
library manager can be controlled interactively or from the command line.

Using LIB51

To invoke the LIB51 library manager from the DOS prompt, type LIB51 along
with an optional library manager command. The command line must be entered
according to the following format:

LIB51 !command"

where command may be a single library manager command. To enter more than
one command, append the ampersand character (&) to the end of the LIB51
library manager command line.

Interactive Mode

If no command is entered on the command line, or if the ampersand character is
included at the end of the line, the LIB51 library manager enters interactive
mode. The LIB51 library manager displays an asterisk character (*) to signal
that it is in interactive mode and is waiting for input.

Any of the LIB51 library manager commands may be entered on the command
line or after the * prompt when in interactive mode.

Type EXIT to leave the LIB51 library manager interactive mode.

138 Chapter 3. LIB51 Library Manager

3

Command Summary

The following table lists the commands that are available for the LIB51 library
manager. All of these commands are described in detail in the sections that
follow.

Command Abbreviation Description

ADD A adds an object module to the library file.

CREATE C creates a new library file.

DELETE D removes an object module from a library file.

EXIT E exits the interactive mode of the LIB51 library manager.

HELP H displays help information for the LIB51 library manager.

LIST L displays module and public symbol information stored in a library
file.

8051 Utilities 139

3

Creating a Library

The CREATE command directs the LIB51 library manager to create a new,
empty library file. The CREATE command may be entered on the command
line, or at the * prompt in interactive mode, and must have the following format:

CREATE libfile

where libfile is the name of the library file to create. The name of the library file
must include the file extension. Usually, .LIB is the extension that is used for
library files.

Example:
LIB51 CREATE MYFILE.LIB

* CREATE FASTMATH.LIB

140 Chapter 3. LIB51 Library Manager

3

Adding Object Modules

The ADD command instructs the LIB51 library manager to add one or more
object modules to a specified library file. The ADD command must be entered
in the following format:

ADD filename !(modulename, …)" !, …" TO libfile

where

filename is the name of an object file or library file. You may specify
several files for each ADD command. Each file must be
separated by a comma.

modulename is the name of a module in a library file. If you do not want
to add the entire contents of a library, you may select the
modules that you want to add. Module names are specified
immediately following the filename, must be enclosed in
parentheses, and must be separated by commas.

libfile is the name of an existing library file. The specified object
modules are added to this library.

The ADD command may be entered on the command line or after the * prompt
in interactive mode as shown in the following example.

LIB51 ADD MOD1.OBJ, UTIL.LIB(FPMUL, FPDIV) TO NEW.LIB

* ADD FPMOD.OBJ TO NEW.LIB

8051 Utilities 141

3

Removing Object Modules

The DELETE command removes object modules from a library file. This
command must be entered in the following format:

DELETE libfile (modulename !, modulename …")

where

libfile is the name of an existing library file. The specified object
modules are removed from this library.

modulename is the name of a module in the library file that you want to
remove. Module names are entered in parentheses and are
separated by commas.

The DELETE command may be entered on the command line or after the *
prompt in interactive mode as shown in the following example.

LIB51 DELETE NEW.LIB (MODUL1)

* DELETE NEW.LIB (FPMULT, FPDIV)

142 Chapter 3. LIB51 Library Manager

3

Listing Library Contents

Use the LIST command to direct the LIB51 library manager to generate a listing
of the object modules that are stored in a library file. LIST may be specified on
the command line or after the * prompt in interactive mode. This command has
the following format:

LIST libfile !TO listfile" !PUBLICS"

where

libfile is the library file from which a module list is generated.

listfile is the file where listing information is written. If no
listfile is specified, the listing information is displayed on
the screen.

PUBLICS specifies that public symbols are included in the listing.
Normally, only module names are listed.

Example:
LIB51 LIST NEW.LIB

* LIST NEW.LIB TO NEW.LST PUBLICS

The LIB51 library manager produces a module listing that appears as follows:

LIBRARY: NEW.LIB
 PUTCHAR
 _PUTCHAR
 PRINTF
 ?_PRINTF517?BYTE
 ?_SPRINTF517?BYTE
 ?_PRINTF?BYTE
 ?_SPRINTF?BYTE
 _PRINTF
 _SPRINTF
 _PRINTF517
 _SPRINTF517
 PUTS
 _PUTS

In this example, PUTCHAR, PRINTF, and PUTS are module names. The names
listed below each of these module names are public symbols found in each of the
modules.

8051 Utilities 143

3

Help Information

The HELP command directs the LIB51 library manager to display the available
library manager commands. This command may be entered on the command line
or at the * prompt in interactive mode. The LIB51 library manager responds
with the following text:

ADD {file[(module[,...])]} [,...] TO library_file
CREATE library_file
DELETE library_file(module[,...])
EXIT
HELP
LIST library_file [TO file] [PUBLICS]

144 Chapter 3. LIB51 Library Manager

3

LIB51 Error Messages

This chapter lists the fatal and non-fatal errors that may be generated by the
LIB51 library manager during execution. Each section includes a brief
description of the message, as well as corrective actions you can take to
eliminate the error or warning condition.

Fatal Errors

Fatal errors cause immediate termination of the LIB51 library manager. These
errors normally occur as the result of a corrupt library or object file, or as a result
of a specification problem involving library or object files.

Error Error Message and Description

215 CHECK SUM ERROR
FILE: filename
The checksum for filename is incorrect. This usually indicates a corrupt file.

216 INSUFFICIENT MEMORY
There is not enough memory for the LIB51 library manager to successfully
complete the requested operation.

217 NOT A LIBRARY
FILE: filename
The filename that was specified is not a library file.

219 NOT AN 8051 OBJECT FILE
FILE: filename
The filename that was specified is not a valid 8051 object file.

222 MODULE SPECIFIED MORE THAN ONCE
MODULE: filename (modulename)
The specified modulename is included on the command line more than once.

8051 Utilities 145

3

Errors

The following errors cause immediate termination of the LIB51 library manager.
These errors usually involve invalid command line syntax or I/O errors.

Error Error Message and Description

201 INVALID COMMAND LINE SYNTAX
A syntax error was detected in the command. The command line is displayed up
to and including the point of error.

202 INVALID COMMAND LINE, TOKEN TOO LONG
The command line contains a token that is too long for the LIB51 library manager
to process.

203 EXPECTED ITEM MISSING
The command line is incomplete. An expected item is missing.

205 FILE ALREADY EXISTS
FILE: filename
The filename that was specified already exists. This error is usually generated
when attempting to create a library file that already exists. Erase the file or use a
different filename.

208 MISSING OR INVALID FILENAME
A filename is missing or invalid.

209 UNRECOGNIZED COMMAND
A command is unrecognized by the LIB51 library manager. Make sure you
correctly specified the command name.

210 I/O ERROR ON INPUT FILE:
system error message
FILE: filename
An I/O error was detected when accessing one of the input files.

211 I/O ERROR ON LIBRARY FILE:
system error message
FILE: filename
An I/O error was detected when accessing a library file.

212 I/O ERROR ON LISTING FILE:
system error message
FILE: filename
An I/O error was detected when accessing a listing file.

146 Chapter 3. LIB51 Library Manager

3

Error Error Message and Description

213 I/O ERROR ON TEMPORARY FILE:
system error message
FILE: filename
An I/O error was detected when a temporary file was being accessed.

220 INVALID INPUT MODULE
FILE: filename
The specified input module is invalid. This error could be the result of an
assembler error or could indicate that the input object file is corrupt.

221 FILE SPECIFIED MORE THAN ONCE
FILE: filename
The filename specified was included on the command line more than once.

223 CANNOT FIND MODULE
MODULE: filename (modulename)
The modulename specified on the command line was not located in the object or
library file.

224 ATTEMPT TO ADD DUPLICATE MODULE
MODULE: filename (modulename)
The specified modulename already exists in the library file and cannot be added.

225 ATTEMPT TO ADD DUPLICATE PUBLIC SYMBOL
MODULE: filename (modulename)
PUBLIC: symbolname
The specified public symbolname in modulename already exists in the library file
and cannot be added.

8051 Utilities 147

4

Chapter 4. OC51 Banked Object File
Converter

The OC51 Banked Object File Converter is an application that converts banked
object files (object files created with the BL51 code banking linker/locator) into
absolute object files.

The BL51 code banking linker/locator emits a special banked object file when it
links a program that uses bank switching. Banked object files contain several
banks of code that reside at the same physical location. For this reason, these
object files are not compatible with Intel absolute OMF-51 object files. You
must use the OC51 Banked Object File Converter to convert a single banked
object file into one or more absolute object files.

The OC51 Banked Object File Converter will create an absolute object file for
each code bank represented in the banked object file. Symbolic debugging
information that was included in the banked object file will be copied to the
absolute object modules that are generated.

Once you have used the OC51 Banked Object File Converter to create absolute
object files, you may use the OH51 Object-Hex Converter to create Intel HEX
files for each absolute object file.

The following sections describe how to use the OC51 Banked Object File
Converter and list the errors that may be encountered during execution.

Using OC51

The OC51 Banked Object File Converter is invoked from the DOS prompt by
typing OC51 along with the name of the banked object file. The OC51 Banked
Object File Converter command line must be entered according to the following
format:

OC51 banked_obj_file

where

banked_obj_file is the name of the banked object file that is generated by the
BL51 code banking linker/locator.

148 Chapter 4. OC51 Banked Object File Converter

4

The OC51 Banked Object File Converter will create separate absolute object
modules for each code bank represented in the banked object file. The absolute
object modules will be created with a filename consisting of the basename of the
banked object file combined with the file extension Bnn where nn corresponds to
the bank number 00-31. For example:

OC51 MYPROG

creates the absolute object files MYPROG.B00 for code bank 0, MYPROG.B01

for code bank 1, MYPROG.B02 for code bank 2, etc.

NOTE
You should use the OC51 Banked Object File Converter only if you used the
BANKx, BANKAREA, or COMMON directives on the BL51 code banking
linker/locator command line to specify code banking is in effect.

If your program does not use code banking, do not use the OC51 Banked Object
File Converter to generate an absolute object module (even if you linked using
the BL51 code banking linker/locator).

The OC51 Banked Object File Converter may simultaneously open as many as
17 files. You should verify that the FILES statement in your CONFIG.SYS file
specifies more than 17 files. Refer to your DOS manual for more information.

8051 Utilities 149

4

OC51 Error Messages

This chapter lists the errors that you may encounter when you use the OC51
Banked Object File Converter. Each message includes a brief description of the
message as well as corrective actions you can take to eliminate the error
condition.

Fatal Errors

Error Error Message and Description

201 FILE ACCESS ERROR ON INPUT FILE
FILE: filename
An error occurred while reading the specified file.

202 FILE ACCESS ERROR ON OUTPUT FILE
FILE: filename
An error occurred while writing the specified file.

203 NOT A BANKED 8051 OBJECT FILE
The input file is not a banked object file.

204 INVALID INPUT FILE
The input file has an invalid format.

205 CHECKSUM ERROR
The input file has an invalid checksum. This error is usually caused by an error
from the BL51 code banking linker/locator. Make sure that your program was
linked successfully.

206 INTERNAL ERROR
The OC51 Banked Object File Converter has detected an internal error. Contact
technical support.

207 SCOPE LEVEL ERROR
MODULE: modulename
The symbolic information in the specified file contains errors. This error message
is usually the result of an error at link time. Make sure that your program was
linked successfully.

150 Chapter 4. OC51 Banked Object File Converter

4

Error Error Message and Description

208 PATH OR FILE NOT FOUND
FILE: filename
The OC51 Banked Object File Converter cannot find the specified file. Make sure
the file actually exists.

8051 Utilities 151

5

Chapter 5. OH51 Object-Hex Converter
OH51 is an application that converts absolute object files into Intel HEX files.

Program code stored in the absolute object file is converted into hexadecimal
values and is output to a file in Intel HEX file format. The Intel HEX file may
then be used by an EPROM programmer or emulator.

The following sections describe how to use the OH51 program, the
command-line options that are available, and any errors that may be encountered
during execution.

Using OH51

To invoke OH51 from the DOS prompt, type OH51 along with the name of the
absolute object file. The OH51 command line must be entered in the following
format:

OH51 absolute_obj_file !HEXFILE (filename)"

where

absolute_obj_file is the name of the absolute object file that is generated
by the L51 linker/locator.

filename is the name of the Intel HEX file to generate. By
default, the name given to the HEX file is the base name
of the absolute_obj_file followed by the .HEX

extension.

152 Chapter 5. OH51 Object-Hex Converter

5

OH51 Error Messages

This chapter lists fatal error, syntax error, and warning messages that you may
encounter when using OH51. Each section includes a brief description of the
message as well as corrective actions you can take to eliminate the error or
warning condition.

Fatal Errors

Fatal errors cause immediate termination of the object file conversion. These
errors normally occur as the result of a corrupt absolute object file.

*** FATAL ERROR: INVALID RECORD-TYPE ENCOUNTERED

The absolute object file contains an invalid record type.

*** FATAL ERROR: INCONSISTENT OBJECT FILE

The input file has an invalid format.

Errors

The following errors cause immediate termination of the object file conversion.
They normally occur as the result of invalid or incomplete options specified on
the command line.

*** ERROR, ARGUMENT TOO LONG

An argument in the command line is too long.

*** ERROR, DELIMITER '(' AFTER PARAMETER EXPECTED

The command-line parameter must be followed by an argument enclosed in
parentheses ().

*** ERROR, DELIMITER ')' AFTER PARAMETER EXPECTED

The command-line parameter must be followed by an argument enclosed in
parentheses ().

*** ERROR, UNKNOWN CONTROL:

The specified command-line parameter is unrecognized.

*** ERROR, RESPECIFIED CONTROL, IGNORED

The indicated command-line control was specified twice.

8051 Utilities 153

5

Warnings

Warnings signal that a problem was encountered during the object file
conversion process, but the generated hex file may still be valid. Warnings do
not hinder the object file conversion.

WARNING: <PUBDEF> HEX-FILE WILL BE INVALID

The absolute object file still contains public definitions. This warning
usually indicates that the object file has not been processed by the L51
linker/locator. The hex file that is produced may be invalid.

WARNING: <EXTDEF> UNDEFINED EXTERNAL

The absolute object file still contains external definitions. This warning
usually indicates that the object file has not been processed by the L51
linker/locator. The hex file that is produced may be invalid.

154 Chapter 5. OH51 Object-Hex Converter

5

Intel HEX File Format

The Intel HEX file is an ASCII text file with lines of text that follow the Intel
HEX file format. Each line in an Intel HEX file contains one HEX record.
These records are made up of hexadecimal numbers that represent machine
language code and/or constant data. Intel HEX files are often used to transfer
the program and data that would be stored in a ROM or EPROM. Most EPROM
programmers or emulators can use Intel HEX files.

Record Format

An Intel HEX file is composed of any number of HEX records. Each record is
made up of five fields that are arranged in the following format:

:llaaaatt!dd..."cc

Each group of letters corresponds to a different field, and each letter represents a
single hexadecimal digit. Each field is composed of at least two hexadecimal
digits—which make up a byte—as described below:

: is the colon that starts every Intel HEX record.

ll is the record-length field that represents the number of data
bytes (dd) in the record.

aaaa is the address field that represents the starting address for
subsequent data in the record.

tt is the field that represents the HEX record type, which may
be one of the following:

00 data record
01 end-of-file record

dd is a data field that represents one byte of data. A record may
have multiple data bytes. The number of data bytes in the
record must match the number specified by the ll field.

cc is the checksum field that represents the checksum of the
record. The checksum is calculated by summing the values
of all hexadecimal digit pairs in the record modulo 256 and
taking the two’s complement.

8051 Utilities 155

5

Data Records

The Intel HEX file is made up of any number of data records that are terminated
with a carriage return and a linefeed. Data records appear as follows:

:10246200464C5549442050524F46494C4500464C33

where:

10 is the number of data bytes in the record.

2462 is the address where the data are to be located in memory.

00 is the record type 00 (a data record).

464C...464C is the data.

33 is the checksum of the record.

End-of-File (EOF) Records

An Intel HEX file must end with an end-of-file (EOF) record. This record must
have the value 01 in the record type field. An EOF record always appears as
follows:

:00000001FF

where:

00 is the number of data bytes in the record.

0000 is the address where the data are to be located in memory. The
address in end-of-file records is meaningless and is ignored. An
address of 0000h is typical.

01 is the record type 01 (an end-of-file record).

FF is the checksum of the record and is calculated as
01h + NOT(00h + 00h + 00h + 01h).

156 Chapter 5. OH51 Object-Hex Converter

5

Example Intel HEX File

Following is an example of a complete Intel HEX file:

:10001300AC12AD13AE10AF1112002F8E0E8F0F2244
:10000300E50B250DF509E50A350CF5081200132259
:03000000020023D8
:0C002300787FE4F6D8FD7581130200031D
:10002F00EFF88DF0A4FFEDC5F0CEA42EFEEC88F016
:04003F00A42EFE22CB
:00000001FF

8051 Utilities 157

Glossary

A51
The command used to assemble programs using the A51 Macro Assembler.

aggregate types
Arrays, structures, and unions.

argument
The value that is passed to macro or function.

arithmetic types
Data types that are integral, floating-point, or enumerations.

array
A set of elements all of the same data type.

ASCII
American Standard Code for Information Interchange. This is a set of 256
codes used by computers to represent digits, characters, punctuation, and
other special symbols. The first 128 characters are standardized. The
remaining 128 are defined by the implementation.

basename
The part of the file name that excludes the drive letter, directory name, and
file extension. For example, the basename for the file
C:\SAMPLE\SIO.A51 is SIO.

batch file
A text file that contains MS-DOS commands and programs that can be
invoked from the command line.

BL51
The command used to link object files and libraries using the 8051 Code
Banking Linker/Locator.

C51
The command used to compile programs using the 8051 Optimizing C Cross
Compiler.

code banking
See bank switching.

constant expression
Any expression that evaluates to a constant non-variable value. Constants

158 Glossary

may include character, integer, enumeration, and floating-point constant
values.

declaration
A C construct that associates the attributes of a variable, type, or function
with a name.

definition
A C construct that specifies the name, formal parameters, body, and return
type of a function or that initializes and allocates storage for a variable.

directive
An instruction to the C preprocessor or a control switch to the C51 compiler.

DS51
The command used to load and execute the DS51 Debugger/Simulator.

environment table
The memory area used by MS-DOS to store environment variables and their
values.

environment variable
A variable stored in the environment table. These variables provide MS-DOS
programs with information like where to find include files and library files.

escape sequence
A backslash (‘\’) character followed by a single letter or a combination of
digits that specifies a particular character value in strings and character
constants.

expression
A combination of any number of operators and operands that produces a
constant value.

function
A combination of declarations and statements that can be called by name that
perform an operation and/or return a value.

function call
An expression that invokes and possibly passes arguments to a function.

in-circuit emulator (ICE)
A hardware device that aids in debugging embedded software by providing
hardware-level single-steping, tracing, and break-pointing. Some ICEs
provide a trace buffer that stores the most recent CPU events.

8051 Utilities 159

include file
A text file that is incorporated into a source file using the #include
preprocessor directive.

keyword
A reserved word with a predefined meaning for the compiler.

L51
The command used to link object files and libraries using the 8051
Linker/Locator.

LIB51
The command used to manipulate 8051 library files using the 8051 Library
Manager.

library
A file that stores a number of possibly related object modules. The linker can
extract modules from the library to use in building a target object file.

macro
An identifier that represents a series of keystrokes that is defined using the
#define preprocessor directive.

manifest constant
A macro that is defined to have a constant value.

MCS-51
The general name applied to the entire family of 8051 compatible
microprocessors.

memory model
Any of the models that specifies which memory areas are used for function
arguments and local variables.

monitor51
An 8051 program that can be loaded into your target CPU to aid in debugging
and rapid product development through rapid software downloading.

newline character
The character used to mark the end of a line in a text file or the escape
sequence (‘\n’) used to represent the newline character.

null character
The ASCII character with the value 0 represented as the escape sequence
(‘\0’).

160 Glossary

null pointer
A pointer that references nothing and has an offset of 0000h. A null pointer
has the integer value 0.

object
An area of memory that can be examined. Usually used when referring to the
memory area associated with a variable or function.

object file
A file, created by the compiler, that contains the program segment
information and relocatable machine code.

OH51
The command used to convert absolute object files into other hexadecimal
file formats using the Object File Converter.

operand
A variable or constant that is used in an expression.

operator
A symbol that specifies how to manipulate the operands of an expression;
e.g., +, -, *, /.

parameter
The value that is passed to a macro or function.

PL/M-51
A high-level programming language that provides a blocked structure, a
facility for data structures, type checking, and a standard language for use on
most Intel hardware architectures.

pointers
A variable that contains the address of another variable, function, or memory
area.

pragma
A statement that passes an instruction to the compiler at compile time.

relocatable
Able to be moved or relocated. Not containing absolute or fixed addresses.

RTX51 Full
An 8051 Real-Time Executive that provides a multitasking operating system
kernel and library of routines for its use.

RTX51 Tiny
A limited version of RTX51.

8051 Utilities 161

scalar types
Integer, enumerated, floating-point, and pointer types.

scope
The sections or a program where an item (function or variable) can be
referenced by name. The scope of an item may be limited to file, function, or
block.

source file
A text file containing assembly program code.

stack
An area of memory, indirectly accessed by a stack pointer, that shrinks and
expands dynamically as items are pushed onto the stack and popped off of the
stack. Items in the stack are removed on a LIFO (last-in, first-out) basis.

static
A storage class that, when used with a variable declaration in a function,
causes variables to retain their value after exiting the block or function in
which they are declared.

string
An array of characters that is terminated with a null character (‘\0’).

string literal
A string of characters enclosed within double quotes (“ ”).

token
A fundamental symbol that represents a name or entity in a programming
language.

TS51
The command used to load and execute the 8051 TS51 Target Debugger.

two’s complement
A binary notation that is used to represent both positive and negative
numbers. Negative values are created by complementing all bits of a positive
value and adding 1.

type
A description of the range of values associated with a variable. For example,
an int type can have any value within its specified range (-32768 to 32767).

whitespace character
Characters that are used as delimiters in C programs such as space, tab,
newline, etc.

162 Glossary

wild card
One of the MS-DOS characters (? or *) that can be used in place of characters
in a filename.

8051 Utilities 163

Index

A
A51, defined155
Absolute Address Calculation8
Absolute Object File.............................8
Absolute object files3
ADD ...136
Additional items, notational

conventions.......................................iv
aggregate types, defined155
argument, defined155
arithmetic types, defined...................155
array, defined....................................155
ASCII, defined..................................155
Automatic Bank Selection49

B
BA ..15
Bank Switching...................................10
Bank Switching Configuration50
Bank Switching Directives42
BANKAREA............................15,45,57
Banked object files3
Banking With Four 64 KByte

Banks ...53
BANKx.....................................15,45,58
basename, defined155
batch file, defined155
BI...15,59
BIT ...15,25,59
BL51...1
BL51 code banking

linker/locator......................................1
BL51 Error Messages88
BL51, defined...................................155
bold capital text, use of........................iv
braces, use ofiv
Bx ...15

C
C51, defined..................................... 155
C51LIB .. 33
Choices, notational conventions.......... iv
CO... 15,60
CODE 15,30,60
Code Bank Areas 44
code banking, defined 155
Code Space .. 7
Combining Program Modules 3
Combining Segments 4
Command Files 13
Command-Line Directives 14
Command-Line Examples.................. 13
COMMON............................... 15,46,61
Common Code Area........................... 42
constant expression, defined 155
courier typeface, use of iv
CREATE.. 136

D
DA... 15,62
DATA 15,26,62
declaration, defined.......................... 156
definition, defined 156
DELETE .. 136
Directive Reference 56
Directive Summary 16
directive, defined 156
Displayed text, notational

conventions iv
Document conventions........................ iv
double brackets, use of........................ iv
DS51, defined 156

E
ellipses, use of..................................... iv
ellipses, vertical, use of iv
environment table, defined............... 156

164 Index

environment variable, defined.......... 156
EOF records..................................... 153
Errorlevel ... 14
escape sequence, defined 156
Exceptions ... 97
EXIT .. 136
expression, defined 156
External Data Space............................. 7

F
Filename, notational conventions........ iv
function call, defined 156
function, defined 156

G
Generating a Listing File...................... 9
Generating an Absolute Object

File .. 8

H
HELP ... 136
High-Level Language Directives 32

I
ICE, defined..................................... 156
ID.. 15,63
IDATA..................................... 15,27,63
in-circuit emulator, defined.............. 156
include file, defined 157
Intel HEX

Data records 153
End-of-file records 153
EOF records 153
Example file 154
Record format 152

Intel HEX file format 152
Intel HEX files.............................. 3,149
Internal Data Space.............................. 6
italicized text, use of iv
IX.. 15,64
IXREF...................................... 15,17,64

K
Key names, notational

conventions.......................................iv
keyword, defined..............................157

L
L51, defined157
LIB51 ...135

Adding Object Modules138
Command line.............................135
Commands..................................136
Creating a Library.......................137
Error Messages142
Help Information141
Interactive mode135
Listing Library Contents.............140
Removing Object Modules139

LIB51, defined157
Library Manager...............................135
library, defined157
Linking Programs...............................11
LIST ...136
Listing File ...9
Listing File Directives17
Locating Segments6
Long Command Lines12

M
macro, defined..................................157
manifest constant, defined157
MCS-51, defined157
memory model, defined....................157
monitor51, defined157

N
NA...15,65
NAME......................................15,22,65
newline character, defined................157
NLIB ...15,70
NOAMAKE15,22,66
NODEBUGLINES...................15,22,67
NODEBUGPUBLICS..............15,23,68
NODEBUGSYMBOLS15,24,69

8051 Utilities 165

NODEFAULTLIBRARY.........15,32,70
NODL..15,67
NODP..15,68
NODS..15,69
NOGENERATED18
NOGN ..18
NOLI ..15,18,71
NOLIBRARIES..................................18
NOLINES.................................15,19,71
NOMA...15,72
NOMAP15,18,72
Non-Fatal Errors.................................91
NOOL..15,75
NOOVERLAY15,33,75
NOPU..15,73
NOPUBLICS............................15,18,73
NOSY..15,74
NOSYMBOLS15,18,74
null character, defined157
null pointer, defined..........................158

O
object file, defined............................158
object, defined158
OC51 ...3,145

Command line.............................145
OH51 ...3,149

Command line.............................149
Error messages............................150

OH51, defined158
OL..15,75
Omitted text, notational

conventions.......................................iv
operand, defined158
operator, defined...............................158
Optimum Program Structure

with Bank Switching........................44
Optional items, notational

conventions.......................................iv
Ordering Segments in a Bank47
Output File..14
OVERLAY...............................15,34,75
Overlaying Data Memory7

P
PAGELENGTH....................... 15,17,77
PAGEWIDTH.......................... 15,17,78
parameter, defined............................ 158
PC ... 16,80
PDATA.................................... 16,32,79
PL.. 15,77
PL/M-51, defined............................. 158
pointers, defined............................... 158
PR ... 16,81
pragma, defined................................ 158
PRECEDE................................ 16,28,80
PRINT...................................... 16,17,81
Printed text, notational

conventions iv
Public Symbols in

L51_BANK.A51............................. 52
PW .. 15,78

R
RAMSIZE................................ 16,25,82
REGFILE................................. 16,42,83
relocatable, defined.......................... 158
Resolving External References 8
RS ... 16,82
RTX51 11,16,49,84
RTX51 and RTX51 Tiny

Directives .. 49
RTX51 Tiny....................................... 11
RTX51 Tiny, defined 158
RTX51, defined 158
RTX51TINY............................ 16,49,85

S
sans serif typeface, use of.................... iv
scalar types, defined......................... 159
scope, defined 159
Segment Naming Conventions 4
source file, defined........................... 159
Specifying Code Banks and

Common Code Areas 44
ST.. 16,86
STACK 16,29,86

166 Index

stack, defined 159
static, defined................................... 159
string literal, defined 159
string, defined 159

T
token, defined 159
TS51, defined................................... 159
two’s complement, defined 159
type, defined 159

V
Variables, notational

conventions iv

vertical bar, use ofiv

W
Warnings ..88
whitespace character, defined...........159
wild card, defined.............................160

X
XD...16,87
XDATA....................................16,31,87

	Chapter 1. BL51 Code Banking Linker/Locator
	Introduction to BL51
	BL51 Overview
	Combining Program Modules
	Combining Segments
	Locating Segments
	Overlaying Data Memory
	Resolving External References
	Absolute Address Calculation
	Generating an Absolute Object File
	Generating a Listing File
	Bank Switching
	Using RTX51 and RTX51 Tiny

	Linking Programs with BL51
	Long Command Lines
	Command Files
	Command˚Line Examples
	DOS Errorlevel
	Output File
	Command˚Line Directives

	Directive Summary
	Listing File Directives
	Output File Directives
	Segment Size and Location Directives
	High-Level Language Directives
	Bank Switching Directives
	RTX 51 Full and RTX51 Tiny Directives

	Bank Switching Configuration
	L51_BANK.A51 Constants
	Public Symbols in L51_BANK.A51
	Configuration Examples

	BL51 Directive Reference
	BL51 Error Messages
	Warnings
	Non-Fatal Errors
	Fatal Errors
	Exceptions

	Chapter 2. Application Examples
	C51 Example
	CSAMPLE1.C Listing File
	CSAMPLE2.C Listing File
	CSAMPLE3.C Listing File
	CSAMPLE Linker/Locator Listing File

	A51 Example
	ASAMPLE1.A51 Listing File
	ASAMPLE2.A51 Listing File
	ASAMPLE3.A51 Listing File
	ASAMPLE Linker/Locator Listing File

	Code Banking Examples
	Example€1. Code Banking with C51
	Example€2. Code Banking with Constants
	Example€3. Placing Specific Functions in Code Banks
	Example€4. Code Banking with PL/M˚51

	Chapter 3. LIB51 Library Manager
	Using LIB51
	Interactive Mode
	Command Summary
	Creating a Library
	Adding Object Modules
	Removing Object Modules
	Listing Library Contents
	Help Information
	LIB51 Error Messages
	Fatal Errors
	Errors

	Chapter 4. OC51 Banked Object File Converter
	Using OC51
	OC51 Error Messages
	Fatal Errors

	Chapter 5. OH51 Object-Hex Converter
	Using OH51
	OH51 Error Messages
	Intel HEX File Format
	Record Format
	Data Records
	End˚of˚File (EOF) Records
	Example Intel HEX File

	Glossary
	Index

